Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application

无线电技术 人工智能 计算机科学 医学 机器学习
作者
Yichen Meng,Yue Yang,Miao Hu,Zheng Zhang,Chao Zhou
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:95: 75-87 被引量:43
标识
DOI:10.1016/j.semcancer.2023.07.003
摘要

Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱听歌澜发布了新的文献求助10
刚刚
肉胖胖肉完成签到,获得积分10
刚刚
小二郎应助木木采纳,获得10
刚刚
刚刚
peiter发布了新的文献求助10
2秒前
小白完成签到,获得积分10
2秒前
2秒前
2秒前
顾矜应助体贴岩采纳,获得10
2秒前
3秒前
3秒前
同力力力完成签到,获得积分10
4秒前
称心乐枫完成签到,获得积分10
4秒前
安详的三颜完成签到,获得积分10
5秒前
Orange应助高高晓啸采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
阔达书雪发布了新的文献求助10
6秒前
6秒前
6秒前
zh完成签到,获得积分20
6秒前
共享精神应助花儿向杨开采纳,获得10
7秒前
搜集达人应助狗狗采纳,获得10
7秒前
木木完成签到,获得积分20
7秒前
Micky发布了新的文献求助10
7秒前
LiuHP完成签到,获得积分10
8秒前
8秒前
lucky李发布了新的文献求助10
8秒前
xin_yang完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
英俊的铭应助爱听歌澜采纳,获得10
8秒前
自然梦岚完成签到 ,获得积分10
9秒前
9秒前
彳亍发布了新的文献求助10
9秒前
活力的泥猴桃完成签到 ,获得积分10
9秒前
10秒前
QLLW完成签到,获得积分10
10秒前
10秒前
10秒前
青寻完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569081
求助须知:如何正确求助?哪些是违规求助? 4653733
关于积分的说明 14707933
捐赠科研通 4595480
什么是DOI,文献DOI怎么找? 2521818
邀请新用户注册赠送积分活动 1493223
关于科研通互助平台的介绍 1463881