Artificial intelligence-based radiomics in bone tumors: Technical advances and clinical application

无线电技术 人工智能 计算机科学 医学 机器学习
作者
Yichen Meng,Yue Yang,Miao Hu,Zheng Zhang,Chao Zhou
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:95: 75-87 被引量:12
标识
DOI:10.1016/j.semcancer.2023.07.003
摘要

Radiomics is the extraction of predefined mathematic features from medical images for predicting variables of clinical interest. Recent research has demonstrated that radiomics can be processed by artificial intelligence algorithms to reveal complex patterns and trends for diagnosis, and prediction of prognosis and response to treatment modalities in various types of cancer. Artificial intelligence tools can utilize radiological images to solve next-generation issues in clinical decision making. Bone tumors can be classified as primary and secondary (metastatic) tumors. Osteosarcoma, Ewing sarcoma, and chondrosarcoma are the dominating primary tumors of bone. The development of bone tumor model systems and relevant research, and the assessment of novel treatment methods are ongoing to improve clinical outcomes, notably for patients with metastases. Artificial intelligence and radiomics have been utilized in almost full spectrum of clinical care of bone tumors. Radiomics models have achieved excellent performance in the diagnosis and grading of bone tumors. Furthermore, the models enable to predict overall survival, metastases, and recurrence. Radiomics features have exhibited promise in assisting therapeutic planning and evaluation, especially neoadjuvant chemotherapy. This review provides an overview of the evolution and opportunities for artificial intelligence in imaging, with a focus on hand-crafted features and deep learning-based radiomics approaches. We summarize the current application of artificial intelligence-based radiomics both in primary and metastatic bone tumors, and discuss the limitations and future opportunities of artificial intelligence-based radiomics in this field. In the era of personalized medicine, our in-depth understanding of emerging artificial intelligence-based radiomics approaches will bring innovative solutions to bone tumors and achieve clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助起风采纳,获得10
刚刚
酷波er应助掌柜采纳,获得10
1秒前
2秒前
香蕉觅云应助astalavista采纳,获得10
2秒前
2秒前
大模型应助hanchangcun采纳,获得10
4秒前
10秒前
10秒前
sush1hang发布了新的文献求助10
10秒前
小南完成签到,获得积分10
12秒前
A宇发布了新的文献求助10
12秒前
打打应助Kun Chen采纳,获得10
12秒前
12秒前
13秒前
13秒前
善学以致用应助竹斟酒采纳,获得10
14秒前
起风发布了新的文献求助10
15秒前
我是老大应助淡然的宛秋采纳,获得10
15秒前
早春发布了新的文献求助10
15秒前
掌柜发布了新的文献求助10
15秒前
CipherSage应助css采纳,获得10
16秒前
16秒前
张婷婷应助十月的天空采纳,获得10
16秒前
hanchangcun发布了新的文献求助10
18秒前
19秒前
精明一寡发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
22秒前
may发布了新的文献求助10
22秒前
23秒前
BIG涛完成签到,获得积分10
23秒前
星亚唐发布了新的文献求助10
25秒前
canjian1943发布了新的文献求助10
25秒前
科目三应助霉小欧采纳,获得100
25秒前
tttt完成签到 ,获得积分10
26秒前
26秒前
27秒前
搜集达人应助sush1hang采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376