亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
20秒前
24秒前
杨杨完成签到,获得积分20
26秒前
犹豫绾绾完成签到 ,获得积分10
27秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
光能使者完成签到 ,获得积分10
29秒前
杨杨发布了新的文献求助10
29秒前
guozizi应助阿米尔盼盼采纳,获得100
30秒前
浮游应助阿米尔盼盼采纳,获得10
30秒前
烟花应助阿米尔盼盼采纳,获得10
30秒前
打打应助科研通管家采纳,获得30
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
研友_89Nm7L发布了新的文献求助10
4分钟前
4分钟前
wrl2023完成签到,获得积分10
4分钟前
研友_89Nm7L完成签到,获得积分10
4分钟前
4分钟前
6分钟前
发呆员发布了新的文献求助100
6分钟前
量子星尘发布了新的文献求助10
6分钟前
万能图书馆应助发呆员采纳,获得100
6分钟前
aa完成签到,获得积分20
6分钟前
kklkimo完成签到,获得积分10
7分钟前
aa发布了新的文献求助50
7分钟前
zouzou完成签到,获得积分20
7分钟前
7分钟前
脑洞疼应助科研通管家采纳,获得10
8分钟前
Akim应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
9分钟前
lics发布了新的文献求助10
9分钟前
chenlc971125完成签到 ,获得积分10
10分钟前
Owen应助科研通管家采纳,获得10
10分钟前
开朗若之完成签到 ,获得积分10
10分钟前
su完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668640
关于积分的说明 14771517
捐赠科研通 4613414
什么是DOI,文献DOI怎么找? 2530181
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516