Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
May完成签到,获得积分20
刚刚
谢大喵发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
充电宝应助liuziop采纳,获得30
3秒前
3秒前
4秒前
4秒前
5秒前
欣慰元蝶发布了新的文献求助10
6秒前
6秒前
王叮叮完成签到,获得积分10
7秒前
Elk完成签到 ,获得积分10
7秒前
饭宝发布了新的文献求助10
8秒前
9秒前
9秒前
石子完成签到 ,获得积分10
10秒前
11秒前
顺心一凤发布了新的文献求助10
12秒前
欣慰元蝶完成签到,获得积分10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
嘟噜嘟噜应助科研通管家采纳,获得50
12秒前
Owen应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
lilivite应助科研通管家采纳,获得20
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得30
13秒前
Orange应助科研通管家采纳,获得200
13秒前
FashionBoy应助科研通管家采纳,获得30
13秒前
iNk应助科研通管家采纳,获得20
13秒前
慕青应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得150
13秒前
13秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453677
求助须知:如何正确求助?哪些是违规求助? 4561217
关于积分的说明 14281209
捐赠科研通 4485189
什么是DOI,文献DOI怎么找? 2456535
邀请新用户注册赠送积分活动 1447259
关于科研通互助平台的介绍 1422687