Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YeMa完成签到,获得积分10
1秒前
yy111完成签到,获得积分10
4秒前
开放诗筠发布了新的文献求助30
8秒前
8秒前
11秒前
lll完成签到,获得积分10
12秒前
微笑的水桃完成签到 ,获得积分10
14秒前
英俊完成签到,获得积分10
14秒前
14秒前
李琦完成签到 ,获得积分10
16秒前
充满希望发布了新的文献求助10
16秒前
科目三应助lll采纳,获得10
17秒前
十八鱼完成签到 ,获得积分10
18秒前
蓝桉完成签到 ,获得积分10
19秒前
Pengcheng完成签到 ,获得积分10
19秒前
flysky120完成签到,获得积分10
20秒前
xmyang完成签到,获得积分10
21秒前
21秒前
科研通AI2S应助云水雾心采纳,获得100
23秒前
yifei完成签到,获得积分10
25秒前
淡定的苑睐完成签到,获得积分10
26秒前
27秒前
Yaya完成签到 ,获得积分10
27秒前
隐形曼青应助dui采纳,获得10
27秒前
RUOXI完成签到,获得积分10
30秒前
31秒前
不吃香菜完成签到 ,获得积分10
32秒前
陈婷完成签到,获得积分10
33秒前
开放诗筠完成签到,获得积分10
33秒前
李可以完成签到 ,获得积分10
33秒前
云水雾心发布了新的文献求助100
35秒前
37秒前
Imp完成签到,获得积分10
37秒前
38秒前
动人的招牌完成签到 ,获得积分10
39秒前
40秒前
三国时代发布了新的文献求助10
43秒前
heyan完成签到,获得积分0
46秒前
46秒前
小五完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565231
求助须知:如何正确求助?哪些是违规求助? 4650088
关于积分的说明 14689720
捐赠科研通 4591964
什么是DOI,文献DOI怎么找? 2519415
邀请新用户注册赠送积分活动 1491925
关于科研通互助平台的介绍 1463159