亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ZhangMingHe完成签到,获得积分10
1秒前
Xuanye完成签到,获得积分10
1秒前
3秒前
chenziyuan完成签到 ,获得积分20
7秒前
8秒前
9秒前
12秒前
光轮2000发布了新的文献求助10
13秒前
土豪的念云完成签到,获得积分10
13秒前
Xuanye发布了新的文献求助10
13秒前
lunar完成签到 ,获得积分10
15秒前
缓慢枕头发布了新的文献求助10
20秒前
22秒前
SciGPT应助油柑美式采纳,获得10
23秒前
27秒前
28秒前
山鬼发布了新的文献求助10
29秒前
29秒前
香蕉觅云应助wang采纳,获得10
31秒前
33秒前
Legend完成签到,获得积分10
33秒前
可爱的函函应助change采纳,获得10
35秒前
38秒前
38秒前
完美的沉鱼完成签到 ,获得积分10
39秒前
知性的剑身完成签到,获得积分10
40秒前
光轮2000发布了新的文献求助10
41秒前
秋作发布了新的文献求助10
43秒前
47秒前
49秒前
科研通AI6应助saywhy采纳,获得30
51秒前
sopha发布了新的文献求助10
54秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
在水一方应助油柑美式采纳,获得10
55秒前
55秒前
franklin_fsz应助科研通管家采纳,获得30
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498101
求助须知:如何正确求助?哪些是违规求助? 4595469
关于积分的说明 14449140
捐赠科研通 4528169
什么是DOI,文献DOI怎么找? 2481381
邀请新用户注册赠送积分活动 1465549
关于科研通互助平台的介绍 1438283