Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助科研通管家采纳,获得10
刚刚
刚刚
那时花开应助科研通管家采纳,获得10
刚刚
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
Lychee完成签到 ,获得积分10
刚刚
科研通AI6应助如此纠结采纳,获得10
1秒前
wxy完成签到,获得积分10
1秒前
1秒前
1秒前
不知完成签到 ,获得积分10
2秒前
2秒前
君竹完成签到,获得积分10
2秒前
阿花阿花发布了新的文献求助10
2秒前
mof发布了新的文献求助10
2秒前
高大草莓完成签到 ,获得积分10
2秒前
YuZhang完成签到 ,获得积分10
3秒前
111发布了新的文献求助10
4秒前
失眠皮皮虾完成签到,获得积分10
4秒前
wxy发布了新的文献求助10
4秒前
小苹果发布了新的文献求助10
4秒前
Mockingjay完成签到,获得积分10
5秒前
钟钟发布了新的文献求助50
5秒前
hhh123发布了新的文献求助10
5秒前
苹果白凡完成签到,获得积分10
5秒前
Sakura发布了新的文献求助10
6秒前
非理性或发布了新的文献求助10
6秒前
魁梧的太清完成签到 ,获得积分10
6秒前
小可爱完成签到,获得积分10
6秒前
平常的夏天完成签到,获得积分10
7秒前
7秒前
深情安青应助小天狼星采纳,获得10
7秒前
陈槊诸发布了新的文献求助10
7秒前
7秒前
笨笨的从阳SJW完成签到 ,获得积分20
7秒前
8秒前
8秒前
七七完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316721
求助须知:如何正确求助?哪些是违规求助? 4459161
关于积分的说明 13873955
捐赠科研通 4349159
什么是DOI,文献DOI怎么找? 2388571
邀请新用户注册赠送积分活动 1382817
关于科研通互助平台的介绍 1352144