Hierarchical Interest Modeling of Long-tailed Users for Click-Through Rate Prediction

计算机科学
作者
Xu Xie,Jin Niu,Lifang Deng,Yan Wang,Jiandong Zhang,Zhihua Wu,Kaigui Bian,Gang Cao,Bin Cui
标识
DOI:10.1109/icde55515.2023.00234
摘要

Click-through rate (CTR) prediction, whose purpose is to predict the probability of a user clicking on an item, plays a pivotal role in recommender systems. Capturing users' accurate preferences from their historical interactions (e.g., clicks) is an essential step for handling this task and has aroused wide concern in both academia and industry. However, most of the previous methods focus on the users with abundant clicks and ill-serve the users who rarely click or purchase items. Though the ratio of these long-tailed users may be small on popular platforms, such as Amazon and Taobao, they are the majority on the newborn e-commerce company like Lazada. To extract the interests of long-tailed users, several works attempt to integrate the side information, such as demographic features. Nevertheless, these features are usually not available and may even lead to privacy concerns. Therefore, how to utilize the noisy and limited clicks becomes the key challenge.In this paper, we propose a novel model called Hierarchical Interest Modeling (HIM). It hierarchically utilizes long-tailed users' limited behaviors and captures their preferences from both personalized and group-wise perspectives. HIM consists of two main components, including User Behavior Pyramid (UBP) and User Behavior Clustering (UBC). The UBP module utilizes additional negative feedback to reduce the noises in positive feedback, thus obtaining reliable user personalized representations. Then, the UBC module automatically discovers latent user groups with self-supervised reconstruction loss and learns another interest representation for each user in a group-wise aspect. Extensive experiments on both public and industrial datasets verify the superiority of HIM compared with the state-of-the-art baselines. Moreover, HIM has already been deployed on Lazada recommendation scenario and gains 3.38% on CTR prediction on average on the online A/B test. Our codes are available in https://github.com/xiaojin-nj/HIM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助jerseyxin采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
动听的寻芹完成签到,获得积分10
2秒前
小羊学学学完成签到 ,获得积分10
2秒前
loseyourself发布了新的文献求助10
2秒前
4秒前
亦天凛完成签到,获得积分10
5秒前
洁净思天完成签到,获得积分10
5秒前
5秒前
7秒前
粗暴的平凡完成签到,获得积分10
9秒前
sunny完成签到,获得积分10
9秒前
10秒前
忧郁的蟑螂王完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
牛牛发布了新的文献求助10
12秒前
liufighter发布了新的文献求助10
15秒前
采采完成签到,获得积分10
15秒前
OOO发布了新的文献求助10
16秒前
hhy驳回了乐乐应助
17秒前
DOODBYE发布了新的文献求助10
18秒前
18秒前
18秒前
斯文身影完成签到,获得积分10
18秒前
Lucas应助LiuRuizhe采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
西粤学发布了新的文献求助10
20秒前
avalanche应助ASDq采纳,获得10
22秒前
土豆味的薯条完成签到,获得积分10
22秒前
Owen应助怡兔采纳,获得30
25秒前
优雅含灵发布了新的文献求助10
25秒前
xxfsx应助斯文身影采纳,获得10
26秒前
笨笨蜜蜂发布了新的文献求助10
27秒前
27秒前
27秒前
lipanpan完成签到 ,获得积分10
27秒前
麦麦完成签到,获得积分20
28秒前
Ava应助Zero采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469