How AI Responds to Common Lung Cancer Questions: ChatGPT versus Google Bard

医学 一致性(知识库) 术语 肺癌 情报检索 医学物理学 病理 人工智能 计算机科学 语言学 哲学
作者
Amir Ali Rahsepar,Neda Tavakoli,Grace Hyun J. Kim,Cameron Hassani,Fereidoun Abtin,Arash Bedayat
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (5) 被引量:175
标识
DOI:10.1148/radiol.230922
摘要

Background The recent release of large language models (LLMs) for public use, such as ChatGPT and Google Bard, has opened up a multitude of potential benefits as well as challenges. Purpose To evaluate and compare the accuracy and consistency of responses generated by publicly available ChatGPT-3.5 and Google Bard to non-expert questions related to lung cancer prevention, screening, and terminology commonly used in radiology reports based on the recommendation of Lung Imaging Reporting and Data System (Lung-RADS) v2022 from American College of Radiology and Fleischner society. Materials and Methods Forty of the exact same questions were created and presented to ChatGPT-3.5 and Google Bard experimental version as well as Bing and Google search engines by three different authors of this paper. Each answer was reviewed by two radiologists for accuracy. Responses were scored as correct, partially correct, incorrect, or unanswered. Consistency was also evaluated among the answers. Here, consistency was defined as the agreement between the three answers provided by ChatGPT-3.5, Google Bard experimental version, Bing, and Google search engines regardless of whether the concept conveyed was correct or incorrect. The accuracy among different tools were evaluated using Stata. Results ChatGPT-3.5 answered 120 questions with 85 (70.8%) correct, 14 (11.7%) partially correct, and 21 (17.5%) incorrect. Google Bard did not answer 23 (19.1%) questions. Among the 97 questions answered by Google Bard, 62 (51.7%) were correct, 11 (9.2%) were partially correct, and 24 (20%) were incorrect. Bing answered 120 questions with 74 (61.7%) correct, 13 (10.8%) partially correct, and 33 (27.5%) incorrect. Google search engine answered 120 questions with 66 (55%) correct, 27 (22.5%) partially correct, and 27 (22.5%) incorrect. The ChatGPT-3.5 is more likely to provide correct or partially answer than Google Bard, approximately by 1.5 folds (OR = 1.55, P = 0.004). ChatGPT-3.5 and Google search engine were more likely to be consistent than Google Bard by approximately 7 and 29 folds (OR = 6.65, P = 0.002 for ChatGPT and OR = 28.83, P = 0.002 for Google search engine, respectively). Conclusion Although ChatGPT-3.5 had a higher accuracy in comparison with the other tools, neither ChatGPT nor Google Bard, Bing and Google search engines answered all questions correctly and with 100% consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
卡卡西应助不会取名字采纳,获得20
1秒前
夏雷发布了新的文献求助10
2秒前
Yi羿完成签到 ,获得积分10
3秒前
4秒前
乐观文龙完成签到,获得积分10
4秒前
焦雪婷发布了新的文献求助10
4秒前
不会学术的羊完成签到,获得积分10
5秒前
lewis17发布了新的文献求助10
6秒前
7秒前
8秒前
在水一方应助ccq采纳,获得10
10秒前
天天天晴完成签到,获得积分10
11秒前
失眠呆呆鱼完成签到 ,获得积分10
12秒前
Cody发布了新的文献求助10
13秒前
满意星星发布了新的文献求助10
13秒前
1212发布了新的文献求助20
14秒前
Xianhe完成签到 ,获得积分10
15秒前
利利应助UNIQUE采纳,获得10
17秒前
7123发布了新的文献求助10
17秒前
焦雪婷完成签到,获得积分10
18秒前
18秒前
LEMONS应助佳佳采纳,获得10
19秒前
勤劳的小牛蛙应助羊羊采纳,获得10
20秒前
22秒前
23秒前
科研路上的干饭桶完成签到,获得积分10
24秒前
小盒儿发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
27秒前
28秒前
脾气暴躁的小兔完成签到,获得积分10
28秒前
chiweiyoung完成签到,获得积分10
29秒前
爆米花应助1212采纳,获得10
29秒前
世界需要我完成签到,获得积分10
29秒前
凯凯完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954395
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099177
捐赠科研通 3230855
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801673