3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carl发布了新的文献求助10
1秒前
cancan发布了新的文献求助10
2秒前
华生发布了新的文献求助10
2秒前
混子发布了新的文献求助10
3秒前
zliaoyuan完成签到,获得积分10
3秒前
4秒前
小蘑菇应助小白菜采纳,获得10
4秒前
6秒前
大力盼易关注了科研通微信公众号
8秒前
我是老大应助的的的维尔采纳,获得10
8秒前
9秒前
英姑应助111采纳,获得10
9秒前
9秒前
9秒前
9秒前
yyyf发布了新的文献求助10
10秒前
带线一去不回完成签到,获得积分10
10秒前
xielixin2001完成签到,获得积分10
11秒前
11秒前
12秒前
meiyu完成签到,获得积分10
12秒前
zyt096完成签到,获得积分10
12秒前
嗨好完成签到,获得积分10
13秒前
情怀应助傻傻的霆采纳,获得10
13秒前
asdfqwer应助st采纳,获得20
14秒前
14秒前
xielixin2001发布了新的文献求助10
14秒前
15秒前
hyr发布了新的文献求助10
15秒前
15秒前
杰杰发布了新的文献求助10
16秒前
ssl关闭了ssl文献求助
16秒前
爱听歌笑柳完成签到,获得积分10
16秒前
无极微光应助HY采纳,获得20
16秒前
17秒前
七面东风发布了新的文献求助10
19秒前
19秒前
情怀应助独特广山采纳,获得10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572125
求助须知:如何正确求助?哪些是违规求助? 4657321
关于积分的说明 14720115
捐赠科研通 4598123
什么是DOI,文献DOI怎么找? 2523566
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464416