亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王彤彤发布了新的文献求助10
2秒前
shaylie完成签到 ,获得积分10
5秒前
大方元风完成签到,获得积分10
5秒前
愉快的平松完成签到,获得积分10
6秒前
ppf完成签到,获得积分20
8秒前
10秒前
科研通AI6应助倩倩子采纳,获得10
11秒前
苹果王子6699完成签到 ,获得积分10
11秒前
11秒前
王彤彤完成签到,获得积分10
14秒前
打打应助Moo5_zzZ采纳,获得30
18秒前
羽毛完成签到,获得积分20
18秒前
慕青应助zjq采纳,获得10
19秒前
羽毛发布了新的文献求助10
21秒前
小张完成签到 ,获得积分10
22秒前
李健应助愉快的平松采纳,获得20
24秒前
24秒前
无猫人士想养猫完成签到,获得积分10
25秒前
秦明完成签到 ,获得积分10
27秒前
liu完成签到 ,获得积分10
27秒前
科目三应助羽毛采纳,获得10
28秒前
zjq发布了新的文献求助10
29秒前
34秒前
ddd完成签到 ,获得积分10
36秒前
Moo5_zzZ发布了新的文献求助30
38秒前
talent发布了新的文献求助10
44秒前
Ava应助Moo5_zzZ采纳,获得30
45秒前
圈圈完成签到 ,获得积分10
48秒前
田様应助兴尽晚回舟采纳,获得10
56秒前
shhoing应助科研通管家采纳,获得10
57秒前
FashionBoy应助科研通管家采纳,获得10
57秒前
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
Owen应助科研通管家采纳,获得10
58秒前
58秒前
华仔应助ttsx采纳,获得10
1分钟前
1分钟前
从容冰淇淋完成签到,获得积分10
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374