3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
蟹黄的店完成签到,获得积分10
1秒前
hk1900发布了新的文献求助10
1秒前
2秒前
刘欢完成签到,获得积分10
2秒前
甜蜜的阳光完成签到,获得积分10
3秒前
3秒前
OMIT完成签到,获得积分10
4秒前
刘歌发布了新的文献求助10
4秒前
Jack发布了新的文献求助10
4秒前
4秒前
Akim应助lsh采纳,获得10
5秒前
6秒前
6秒前
zz发布了新的文献求助10
6秒前
丽丽完成签到,获得积分10
6秒前
6秒前
orixero应助夕荀采纳,获得10
6秒前
6秒前
Xenia发布了新的文献求助10
6秒前
wanci应助上官小怡采纳,获得10
7秒前
大模型应助风辰采纳,获得10
8秒前
北璃发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
9秒前
Jack完成签到,获得积分10
10秒前
陈凯发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI6应助噜噜噜采纳,获得10
10秒前
Kauio发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
CipherSage应助李敏采纳,获得10
14秒前
为霜发布了新的文献求助10
15秒前
15秒前
15秒前
精明凡雁完成签到,获得积分10
16秒前
ccw完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507596
求助须知:如何正确求助?哪些是违规求助? 4603184
关于积分的说明 14484201
捐赠科研通 4536984
什么是DOI,文献DOI怎么找? 2486512
邀请新用户注册赠送积分活动 1469076
关于科研通互助平台的介绍 1441437