3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无聊发布了新的文献求助10
刚刚
刚刚
皛鱼完成签到,获得积分10
1秒前
乐天发布了新的文献求助10
1秒前
NexusExplorer应助SereinXu采纳,获得10
2秒前
勤奋幻露完成签到,获得积分10
2秒前
4秒前
西红柿呀发布了新的文献求助10
4秒前
完美世界应助断章采纳,获得10
4秒前
桢桢树发布了新的文献求助10
5秒前
Akim应助念念采纳,获得10
6秒前
shimmy发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Dylan发布了新的文献求助10
8秒前
8秒前
眼睛大花生完成签到,获得积分10
8秒前
小冰应助暮时采纳,获得10
9秒前
10秒前
old赵应助畅学天下采纳,获得10
10秒前
xx完成签到,获得积分10
10秒前
月牙儿完成签到,获得积分10
11秒前
彭于晏应助西红柿呀采纳,获得10
11秒前
111完成签到 ,获得积分10
11秒前
11秒前
乐天发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
天真稀完成签到,获得积分10
14秒前
lisa发布了新的文献求助10
14秒前
15秒前
Gc发布了新的文献求助10
15秒前
Hao完成签到,获得积分10
15秒前
张智信完成签到 ,获得积分10
16秒前
吴3L完成签到,获得积分10
16秒前
断章发布了新的文献求助10
17秒前
今后应助梦月无声采纳,获得10
17秒前
pancake发布了新的文献求助100
17秒前
Lucas应助Charon采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078