3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时生111完成签到 ,获得积分10
刚刚
kb发布了新的文献求助10
1秒前
dafwfwaf完成签到,获得积分20
1秒前
Snow完成签到 ,获得积分10
2秒前
2秒前
CC发布了新的文献求助10
2秒前
小苏打完成签到,获得积分10
3秒前
Xiaoxiao应助程琳采纳,获得10
3秒前
ycc完成签到 ,获得积分10
3秒前
畏寒的北完成签到,获得积分10
4秒前
爆米花应助单纯的雅香采纳,获得10
4秒前
俭朴的玉兰完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
adazbd发布了新的文献求助10
6秒前
Jenny应助木头人采纳,获得10
6秒前
ATAYA完成签到,获得积分10
7秒前
7秒前
畏寒的北发布了新的文献求助10
7秒前
7秒前
8秒前
地下室没有鬼完成签到 ,获得积分10
8秒前
whh123完成签到 ,获得积分10
8秒前
天天快乐应助空禅yew采纳,获得10
9秒前
在水一方应助开心采纳,获得10
10秒前
Akim应助王w采纳,获得10
10秒前
towerman发布了新的文献求助10
10秒前
畅快平蓝完成签到,获得积分10
10秒前
大棒槌发布了新的文献求助10
11秒前
11秒前
Ann完成签到,获得积分10
11秒前
今今发布了新的文献求助10
12秒前
123123完成签到 ,获得积分10
12秒前
SciGPT应助伊酒采纳,获得10
13秒前
何糖发布了新的文献求助10
14秒前
ding应助SEV采纳,获得10
14秒前
田様应助csq采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808