3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清修发布了新的文献求助10
刚刚
王丹宁发布了新的文献求助10
1秒前
溆玉碎兰笑完成签到 ,获得积分10
1秒前
居然是我完成签到,获得积分10
2秒前
疯狂大脑壳完成签到,获得积分10
2秒前
TQ完成签到,获得积分10
2秒前
忙碌的数学人完成签到,获得积分10
2秒前
鲤鱼怀绿完成签到,获得积分10
3秒前
能干的邹完成签到 ,获得积分10
3秒前
酷炫的大碗完成签到,获得积分10
3秒前
欢呼妙菱发布了新的文献求助10
4秒前
ym完成签到 ,获得积分10
4秒前
Yosemite完成签到,获得积分10
4秒前
5秒前
hihi完成签到,获得积分10
5秒前
xuejie完成签到,获得积分10
5秒前
Vanilla完成签到,获得积分10
5秒前
任性铅笔完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
张正完成签到,获得积分10
6秒前
隐形曼青应助jinx采纳,获得10
7秒前
sunflower完成签到,获得积分0
7秒前
隐形元彤完成签到 ,获得积分10
8秒前
清秀寇完成签到,获得积分10
8秒前
小吴完成签到 ,获得积分10
8秒前
动人的珩完成签到,获得积分20
8秒前
YY完成签到 ,获得积分10
8秒前
Owen应助快来吃甜瓜采纳,获得10
8秒前
大模型应助王丹宁采纳,获得10
9秒前
semiaa完成签到,获得积分10
9秒前
KrisTina完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助高大的蜡烛采纳,获得10
10秒前
木光完成签到,获得积分10
10秒前
yydragen应助爱吃蜂蜜采纳,获得50
10秒前
南瓜头完成签到 ,获得积分10
11秒前
我不困完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助Welcome采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259