3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助wei采纳,获得10
刚刚
sclai完成签到,获得积分10
刚刚
传说奢华发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
蝶梦完成签到,获得积分10
2秒前
3秒前
lx123发布了新的文献求助10
4秒前
善学以致用应助qaq采纳,获得10
5秒前
saber349完成签到,获得积分10
6秒前
哈哈哈发布了新的文献求助10
6秒前
goodbuhui发布了新的文献求助10
7秒前
8秒前
自信花瓣完成签到,获得积分20
8秒前
极速小鱼给极速小鱼的求助进行了留言
9秒前
句号0发布了新的文献求助10
10秒前
10秒前
慕听完成签到,获得积分10
10秒前
yayaha完成签到,获得积分10
10秒前
酷波er应助无风采纳,获得10
10秒前
风清扬应助王雯雯采纳,获得30
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
研0种牛马发布了新的文献求助10
13秒前
13秒前
14秒前
liars完成签到 ,获得积分10
16秒前
烟花应助哈哈哈采纳,获得10
16秒前
16秒前
17秒前
优雅老六发布了新的文献求助10
19秒前
19秒前
20秒前
Irene_Y完成签到,获得积分10
21秒前
wei发布了新的文献求助10
21秒前
gabee完成签到 ,获得积分10
23秒前
CipherSage应助秋浱采纳,获得10
23秒前
23秒前
彭于晏应助a1423072381采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548