亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
14秒前
17秒前
Luckydan发布了新的文献求助10
20秒前
葛力发布了新的文献求助10
21秒前
ding应助百里宛卓采纳,获得10
35秒前
45秒前
49秒前
百里宛卓发布了新的文献求助10
51秒前
57秒前
浮游应助药石无医采纳,获得10
1分钟前
1分钟前
含蓄的小熊猫完成签到 ,获得积分10
1分钟前
Luckydan完成签到,获得积分10
1分钟前
Hh完成签到,获得积分10
1分钟前
HH完成签到,获得积分10
1分钟前
ali发布了新的文献求助10
1分钟前
学术小垃圾完成签到,获得积分10
1分钟前
1分钟前
1分钟前
药石无医完成签到,获得积分10
2分钟前
学术鸟完成签到 ,获得积分10
2分钟前
WerWu完成签到,获得积分10
2分钟前
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
3分钟前
小蘑菇应助ali采纳,获得10
3分钟前
NKTreg发布了新的文献求助10
3分钟前
miki完成签到,获得积分10
4分钟前
顾矜应助LT采纳,获得10
4分钟前
馆长举报晓阳求助涉嫌违规
4分钟前
4分钟前
LT发布了新的文献求助10
4分钟前
ET完成签到,获得积分10
4分钟前
LT完成签到,获得积分10
5分钟前
bji完成签到,获得积分10
5分钟前
馆长应助葛力采纳,获得30
5分钟前
姚老表完成签到,获得积分10
5分钟前
骆十八完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568209
求助须知:如何正确求助?哪些是违规求助? 3990956
关于积分的说明 12355214
捐赠科研通 3662837
什么是DOI,文献DOI怎么找? 2018478
邀请新用户注册赠送积分活动 1052955
科研通“疑难数据库(出版商)”最低求助积分说明 940522