清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
周博应助科研通管家采纳,获得10
1秒前
zhuosht完成签到 ,获得积分10
16秒前
111完成签到 ,获得积分10
22秒前
MS903完成签到 ,获得积分10
27秒前
xiaofeixia完成签到 ,获得积分10
33秒前
lod完成签到,获得积分10
33秒前
大意的火龙果完成签到 ,获得积分10
34秒前
GHX完成签到 ,获得积分10
34秒前
科研通AI2S应助keke采纳,获得10
36秒前
bo完成签到 ,获得积分10
36秒前
钰泠完成签到 ,获得积分10
42秒前
聪慧的从雪完成签到 ,获得积分10
45秒前
楠楠2001完成签到 ,获得积分10
48秒前
sevenhill完成签到 ,获得积分0
48秒前
喻初原完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
秋秋完成签到 ,获得积分10
1分钟前
Criminology34应助keke采纳,获得10
1分钟前
wayne完成签到 ,获得积分10
1分钟前
害羞含卉完成签到,获得积分10
1分钟前
幽默梦之完成签到 ,获得积分10
1分钟前
keke完成签到,获得积分10
1分钟前
沐颜完成签到 ,获得积分10
1分钟前
DianaLee完成签到 ,获得积分10
1分钟前
1分钟前
CherylZhao发布了新的文献求助30
1分钟前
科研通AI2S应助keke采纳,获得10
1分钟前
霜风款冬完成签到,获得积分10
2分钟前
2分钟前
limerencevie完成签到 ,获得积分10
2分钟前
风趣的冬卉完成签到 ,获得积分10
2分钟前
科研通AI2S应助keke采纳,获得10
2分钟前
三年三班三井寿完成签到,获得积分10
2分钟前
Yu完成签到 ,获得积分10
2分钟前
小葵花完成签到 ,获得积分10
2分钟前
不劳而获完成签到 ,获得积分10
2分钟前
叁月二完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867040
关于积分的说明 15108233
捐赠科研通 4823308
什么是DOI,文献DOI怎么找? 2582201
邀请新用户注册赠送积分活动 1536254
关于科研通互助平台的介绍 1494653