已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D-deep optical learning: a multimodal and multitask reconstruction framework for optical molecular tomography

计算机科学 人工智能 卷积神经网络 深度学习 漫反射光学成像 光学相干层析成像 迭代重建 光学 光学层析成像 计算机视觉 断层摄影术 断层重建 物理 模式识别(心理学)
作者
Shuangchen Li,Beilei Wang,Jingjing Yu,Dizhen Kang,Xuelei He,Hongbo Guo,Xiaowei He
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (15): 23768-23768 被引量:5
标识
DOI:10.1364/oe.490139
摘要

Optical molecular tomography (OMT) is an emerging imaging technique. To date, the poor universality of reconstruction algorithms based on deep learning for various imaged objects and optical probes limits the development and application of OMT. In this study, based on a new mapping representation, a multimodal and multitask reconstruction framework-3D deep optical learning (3DOL), was presented to overcome the limitations of OMT in universality by decomposing it into two tasks, optical field recovery and luminous source reconstruction. Specifically, slices of the original anatomy (provided by computed tomography) and boundary optical measurement of imaged objects serve as inputs of a recurrent convolutional neural network encoded parallel to extract multimodal features, and 2D information from a few axial planes within the samples is explicitly incorporated, which enables 3DOL to recognize different imaged objects. Subsequently, the optical field is recovered under the constraint of the object geometry, and then the luminous source is segmented by a learnable Laplace operator from the recovered optical field, which obtains stable and high-quality reconstruction results with extremely few parameters. This strategy enable 3DOL to better understand the relationship between the boundary optical measurement, optical field, and luminous source to improve 3DOL's ability to work in a wide range of spectra. The results of numerical simulations, physical phantoms, and in vivo experiments demonstrate that 3DOL is a compatible deep-learning approach to tomographic imaging diverse objects. Moreover, the fully trained 3DOL under specific wavelengths can be generalized to other spectra in the 620-900 nm NIR-I window.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒲冰红完成签到,获得积分10
1秒前
1秒前
nico完成签到,获得积分10
2秒前
12完成签到 ,获得积分10
2秒前
斯文败类应助洁净的草丛采纳,获得10
2秒前
GingerF应助科研通管家采纳,获得100
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
xxfsx应助科研通管家采纳,获得10
3秒前
虚心小鸽子完成签到,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
xxfsx应助科研通管家采纳,获得10
4秒前
GingerF应助科研通管家采纳,获得60
4秒前
浮游应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
啦啦发布了新的文献求助10
5秒前
脑洞疼应助Geass采纳,获得10
5秒前
惊鸿完成签到 ,获得积分10
5秒前
蒲冰红发布了新的文献求助10
5秒前
orixero应助高铭泽采纳,获得10
6秒前
留胡子的霆完成签到,获得积分10
7秒前
典雅问寒应助nico采纳,获得10
9秒前
6666完成签到,获得积分10
9秒前
慕青应助gg采纳,获得10
9秒前
9秒前
伊戈达拉一个大拉完成签到 ,获得积分10
10秒前
胖虎发布了新的文献求助10
12秒前
温暖眼神完成签到,获得积分10
12秒前
Carole发布了新的文献求助10
13秒前
Shyee完成签到 ,获得积分10
13秒前
Jasmine完成签到,获得积分10
14秒前
15秒前
高铭泽完成签到,获得积分10
16秒前
火神杯完成签到,获得积分10
16秒前
斯文败类应助hellogene采纳,获得10
16秒前
17秒前
Geass发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504