Detecting the corneal neovascularisation area using artificial intelligence

裂隙灯 人工智能 医学 交叉口(航空) 公制(单位) 人工神经网络 眼科 自动化方法 模式识别(心理学) 计算机视觉 计算机科学 地图学 运营管理 经济 地理
作者
Burak Mergen,Tarek Safi,Matthias Nadig,Gopal Bhattrai,Loay Daas,Jan Alexandersson,Berthold Seitz
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:: bjo-323308
标识
DOI:10.1136/bjo-2023-323308
摘要

Aims To create and assess the performance of an artificial intelligence-based image analysis tool for the measurement and quantification of the corneal neovascularisation (CoNV) area. Methods Slit lamp images of patients with CoNV were exported from the electronic medical records and included in the study. An experienced ophthalmologist made manual annotations of the CoNV areas, which were then used to create, train and evaluate an automated image analysis tool that uses deep learning to segment and detect CoNV areas. A pretrained neural network (U-Net) was used and fine-tuned on the annotated images. Sixfold cross-validation was used to evaluate the performance of the algorithm on each subset of 20 images. The main metric for our evaluation was intersection over union (IoU). Results The slit lamp images of 120 eyes of 120 patients with CoNV were included in the analysis. Detections of the total corneal area achieved IoU between 90.0% and 95.5% in each fold and those of the non-vascularised area achieved IoU between 76.6% and 82.2%. The specificity for the detection was between 96.4% and 98.6% for the total corneal area and 96.6% and 98.0% for the non-vascularised area. Conclusion The proposed algorithm showed a high accuracy compared with the measurement made by an ophthalmologist. The study suggests that an automated tool using artificial intelligence may be used for the calculation of the CoNV area from the slit-lamp images of patients with CoNV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜妙菡完成签到,获得积分10
刚刚
星辰大海应助张涛采纳,获得10
1秒前
人小鸭儿大完成签到 ,获得积分10
1秒前
BASS完成签到,获得积分10
2秒前
日川冈坂完成签到,获得积分10
3秒前
3秒前
李爱国应助小宋采纳,获得10
3秒前
科研通AI5应助猪猪hero采纳,获得10
4秒前
5秒前
奋斗巧曼完成签到,获得积分10
6秒前
赘婿应助现代雁桃采纳,获得30
7秒前
7秒前
7秒前
lyt发布了新的文献求助20
8秒前
8秒前
拆东墙完成签到,获得积分10
10秒前
领导范儿应助大冬瓜采纳,获得10
10秒前
yijun发布了新的文献求助10
10秒前
11发布了新的文献求助10
11秒前
奋斗不止发布了新的文献求助10
11秒前
woyaobiyeaa发布了新的文献求助10
12秒前
乐乐应助红书包采纳,获得10
12秒前
orixero应助咩咩采纳,获得10
13秒前
日川冈坂发布了新的文献求助10
13秒前
拆东墙发布了新的文献求助10
13秒前
14秒前
wanci应助刘璇1采纳,获得10
14秒前
14秒前
15秒前
tangyandi完成签到,获得积分10
17秒前
Sydlxy关注了科研通微信公众号
17秒前
桐桐应助Lin采纳,获得10
18秒前
19秒前
19秒前
19秒前
小猫咪发布了新的文献求助10
19秒前
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557542
求助须知:如何正确求助?哪些是违规求助? 3132657
关于积分的说明 9398459
捐赠科研通 2832798
什么是DOI,文献DOI怎么找? 1557043
邀请新用户注册赠送积分活动 727051
科研通“疑难数据库(出版商)”最低求助积分说明 716184