重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Cooperative Motion Planning for Persistent 3D Visual Coverage With Multiple Quadrotor UAVs

强化学习 运动规划 计算机科学 弹道 地形 任务(项目管理) 人工智能 实时计算 模拟 数学优化 机器人 工程类 数学 系统工程 天文 生物 生态学 物理
作者
Hongpeng Wang,Shangyuan Song,Qiang-Hui Guo,Dian Xu,Xiaoyang Zhang,P. Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3374-3383 被引量:2
标识
DOI:10.1109/tase.2023.3279092
摘要

In this paper, we address the multiple quadrotor UAVs trajectory planning optimization problem for large-scale, persistent, high-depth visual coverage tasks in three-dimensional (3-D) terrain environment. To minimize the overall energy expenditure of the UAVs for accomplishing a task, we set up an air-to-ground collaborative system which introduces base stations to hold and recharge UAVs. The system is formulated as an integer programming, and solved by a novel hierarchical reinforcement learning trajectory planning algorithm (RL-TP), in which the paths are obtained by reinforcement learning method, and then the trajectories are obtained by Bézier curve method. Both simulation and physical experiments show that RL-TP can effectively improve the efficiency and persistence of aerial visual coverage task. Note to Practitioners —While the multi-rotor UAV has been an important means for field monitoring, it suffers the problem of short battery life a lot. To make it more efficient and persistent, we use multiple UAVs and introduce ground base stations to charge the UAVs. The scenario is formulated as an air-to-ground collaborative system, and the motion planning strategy is to minimize the energy consumption. We propose a hierarchical collaborative coverage reinforcement learning trajectory planning algorithm (RL-TP) to solve it. We carry out both simulation and physical field experiments, and compare RL-TP with other popular methods. The experimental results show that the system is feasible and RL-TP performs well in both time efficiency and energy consumption. In future research, we will introduce unmanned ground vehicles to replace the stationary ground base stations to make the air-to-ground collaborative system more powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麞欎完成签到,获得积分10
1秒前
1秒前
坚定晓兰应助舒服的雁兰采纳,获得10
1秒前
小蘑菇应助舒服的雁兰采纳,获得10
1秒前
乐乐应助蒋蒋采纳,获得10
1秒前
科研通AI6应助要减肥采纳,获得10
1秒前
haha发布了新的文献求助10
1秒前
2秒前
Hou完成签到,获得积分10
2秒前
2秒前
kk0612发布了新的文献求助10
3秒前
苹果寻菱完成签到,获得积分10
3秒前
4秒前
大胆夜天发布了新的文献求助10
4秒前
vffg发布了新的文献求助10
4秒前
123noo发布了新的文献求助10
4秒前
4秒前
5秒前
zain发布了新的文献求助10
5秒前
二中所长完成签到,获得积分10
5秒前
5秒前
lvbowen完成签到,获得积分10
6秒前
小阿琳发布了新的文献求助10
6秒前
6秒前
大个应助lllllsy采纳,获得10
7秒前
7秒前
tleeny完成签到,获得积分10
7秒前
唐一发布了新的文献求助10
7秒前
7秒前
俊逸柏柳发布了新的文献求助10
7秒前
zdfang关注了科研通微信公众号
7秒前
猪猪hero发布了新的文献求助10
8秒前
9秒前
9秒前
小青完成签到,获得积分10
9秒前
chh关注了科研通微信公众号
11秒前
无极微光应助jwj采纳,获得20
11秒前
11秒前
大个应助忧郁的听露采纳,获得10
12秒前
梦鱼完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467299
求助须知:如何正确求助?哪些是违规求助? 4571085
关于积分的说明 14328325
捐赠科研通 4497634
什么是DOI,文献DOI怎么找? 2464057
邀请新用户注册赠送积分活动 1452861
关于科研通互助平台的介绍 1427654