已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cooperative Motion Planning for Persistent 3D Visual Coverage With Multiple Quadrotor UAVs

强化学习 运动规划 计算机科学 弹道 地形 任务(项目管理) 人工智能 实时计算 模拟 数学优化 机器人 工程类 数学 系统工程 天文 生物 生态学 物理
作者
Hongpeng Wang,Shangyuan Song,Qiang-Hui Guo,Dian Xu,Xiaoyang Zhang,P. Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3374-3383 被引量:2
标识
DOI:10.1109/tase.2023.3279092
摘要

In this paper, we address the multiple quadrotor UAVs trajectory planning optimization problem for large-scale, persistent, high-depth visual coverage tasks in three-dimensional (3-D) terrain environment. To minimize the overall energy expenditure of the UAVs for accomplishing a task, we set up an air-to-ground collaborative system which introduces base stations to hold and recharge UAVs. The system is formulated as an integer programming, and solved by a novel hierarchical reinforcement learning trajectory planning algorithm (RL-TP), in which the paths are obtained by reinforcement learning method, and then the trajectories are obtained by Bézier curve method. Both simulation and physical experiments show that RL-TP can effectively improve the efficiency and persistence of aerial visual coverage task. Note to Practitioners —While the multi-rotor UAV has been an important means for field monitoring, it suffers the problem of short battery life a lot. To make it more efficient and persistent, we use multiple UAVs and introduce ground base stations to charge the UAVs. The scenario is formulated as an air-to-ground collaborative system, and the motion planning strategy is to minimize the energy consumption. We propose a hierarchical collaborative coverage reinforcement learning trajectory planning algorithm (RL-TP) to solve it. We carry out both simulation and physical field experiments, and compare RL-TP with other popular methods. The experimental results show that the system is feasible and RL-TP performs well in both time efficiency and energy consumption. In future research, we will introduce unmanned ground vehicles to replace the stationary ground base stations to make the air-to-ground collaborative system more powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王倩完成签到 ,获得积分10
1秒前
耍酷鼠标完成签到 ,获得积分0
2秒前
冯乌完成签到 ,获得积分10
2秒前
3秒前
Keu完成签到,获得积分10
10秒前
mmmwwwx发布了新的文献求助50
13秒前
511完成签到 ,获得积分10
17秒前
缓慢的初南完成签到,获得积分20
22秒前
领导范儿应助木深采纳,获得10
23秒前
Hobby完成签到,获得积分0
24秒前
阳光完成签到,获得积分10
25秒前
daydayup完成签到,获得积分10
26秒前
研友_ZbM2qn应助mbf采纳,获得30
28秒前
陈塘关守将完成签到,获得积分10
31秒前
小曹在医院上晚班完成签到,获得积分10
32秒前
程小柒完成签到 ,获得积分10
37秒前
38秒前
清风完成签到 ,获得积分10
38秒前
38秒前
虚幻豌豆发布了新的文献求助10
39秒前
阿鑫完成签到 ,获得积分10
40秒前
王天天完成签到 ,获得积分10
40秒前
六六完成签到,获得积分10
41秒前
42秒前
44秒前
45秒前
45秒前
代扁扁完成签到 ,获得积分10
47秒前
852应助mmmwwwx采纳,获得10
48秒前
六六发布了新的文献求助10
49秒前
youngyang完成签到 ,获得积分10
50秒前
木深发布了新的文献求助10
50秒前
吕lvlvlvlvlv完成签到 ,获得积分10
51秒前
子春完成签到 ,获得积分10
51秒前
8R60d8应助lulu采纳,获得10
52秒前
照桥心美完成签到,获得积分10
58秒前
小蘑菇应助Nana采纳,获得10
1分钟前
年轻冰萍完成签到,获得积分10
1分钟前
照桥心美发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499935
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428778
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382