Cooperative Motion Planning for Persistent 3D Visual Coverage With Multiple Quadrotor UAVs

强化学习 运动规划 计算机科学 弹道 地形 任务(项目管理) 人工智能 实时计算 模拟 数学优化 机器人 工程类 数学 系统工程 天文 生物 生态学 物理
作者
Hongpeng Wang,Shangyuan Song,Qiang-Hui Guo,Dian Xu,Xiaoyang Zhang,P. Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3374-3383 被引量:2
标识
DOI:10.1109/tase.2023.3279092
摘要

In this paper, we address the multiple quadrotor UAVs trajectory planning optimization problem for large-scale, persistent, high-depth visual coverage tasks in three-dimensional (3-D) terrain environment. To minimize the overall energy expenditure of the UAVs for accomplishing a task, we set up an air-to-ground collaborative system which introduces base stations to hold and recharge UAVs. The system is formulated as an integer programming, and solved by a novel hierarchical reinforcement learning trajectory planning algorithm (RL-TP), in which the paths are obtained by reinforcement learning method, and then the trajectories are obtained by Bézier curve method. Both simulation and physical experiments show that RL-TP can effectively improve the efficiency and persistence of aerial visual coverage task. Note to Practitioners —While the multi-rotor UAV has been an important means for field monitoring, it suffers the problem of short battery life a lot. To make it more efficient and persistent, we use multiple UAVs and introduce ground base stations to charge the UAVs. The scenario is formulated as an air-to-ground collaborative system, and the motion planning strategy is to minimize the energy consumption. We propose a hierarchical collaborative coverage reinforcement learning trajectory planning algorithm (RL-TP) to solve it. We carry out both simulation and physical field experiments, and compare RL-TP with other popular methods. The experimental results show that the system is feasible and RL-TP performs well in both time efficiency and energy consumption. In future research, we will introduce unmanned ground vehicles to replace the stationary ground base stations to make the air-to-ground collaborative system more powerful and flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshine完成签到,获得积分10
刚刚
Fiee发布了新的文献求助10
1秒前
qc关闭了qc文献求助
2秒前
Bgsister完成签到,获得积分10
2秒前
Jessica发布了新的文献求助10
2秒前
顾矜应助无辜的醉波采纳,获得10
4秒前
危机的白风完成签到,获得积分10
5秒前
6秒前
领导范儿应助pamela采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
bgt完成签到,获得积分10
7秒前
研友_VZG7GZ应助happiness采纳,获得10
7秒前
8秒前
QinCaibin发布了新的文献求助10
10秒前
金戈发布了新的文献求助10
10秒前
香蕉觅云应助xue采纳,获得10
10秒前
10秒前
bgt发布了新的文献求助100
11秒前
11秒前
dfggb完成签到,获得积分10
11秒前
11秒前
满意幻莲完成签到,获得积分10
12秒前
LingYi发布了新的文献求助30
12秒前
12秒前
烟花应助古丹娜采纳,获得10
13秒前
勤奋映梦完成签到,获得积分10
13秒前
Fiee完成签到,获得积分10
13秒前
14秒前
14秒前
十二月发布了新的文献求助30
14秒前
15秒前
16秒前
16秒前
xxxx发布了新的文献求助30
17秒前
dinosaur完成签到,获得积分10
17秒前
17秒前
Lucas应助府于杰采纳,获得10
17秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620844
求助须知:如何正确求助?哪些是违规求助? 4705469
关于积分的说明 14932123
捐赠科研通 4763548
什么是DOI,文献DOI怎么找? 2551284
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474712