亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cooperative Motion Planning for Persistent 3D Visual Coverage With Multiple Quadrotor UAVs

强化学习 运动规划 计算机科学 弹道 地形 任务(项目管理) 人工智能 实时计算 模拟 数学优化 机器人 工程类 数学 系统工程 天文 生物 生态学 物理
作者
Hongpeng Wang,Shangyuan Song,Qiang-Hui Guo,Dian Xu,Xiaoyang Zhang,P. Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3374-3383 被引量:2
标识
DOI:10.1109/tase.2023.3279092
摘要

In this paper, we address the multiple quadrotor UAVs trajectory planning optimization problem for large-scale, persistent, high-depth visual coverage tasks in three-dimensional (3-D) terrain environment. To minimize the overall energy expenditure of the UAVs for accomplishing a task, we set up an air-to-ground collaborative system which introduces base stations to hold and recharge UAVs. The system is formulated as an integer programming, and solved by a novel hierarchical reinforcement learning trajectory planning algorithm (RL-TP), in which the paths are obtained by reinforcement learning method, and then the trajectories are obtained by Bézier curve method. Both simulation and physical experiments show that RL-TP can effectively improve the efficiency and persistence of aerial visual coverage task. Note to Practitioners —While the multi-rotor UAV has been an important means for field monitoring, it suffers the problem of short battery life a lot. To make it more efficient and persistent, we use multiple UAVs and introduce ground base stations to charge the UAVs. The scenario is formulated as an air-to-ground collaborative system, and the motion planning strategy is to minimize the energy consumption. We propose a hierarchical collaborative coverage reinforcement learning trajectory planning algorithm (RL-TP) to solve it. We carry out both simulation and physical field experiments, and compare RL-TP with other popular methods. The experimental results show that the system is feasible and RL-TP performs well in both time efficiency and energy consumption. In future research, we will introduce unmanned ground vehicles to replace the stationary ground base stations to make the air-to-ground collaborative system more powerful and flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助愤怒的梦曼采纳,获得10
3秒前
caca完成签到,获得积分0
40秒前
51秒前
平常安发布了新的文献求助10
56秒前
1分钟前
aaa发布了新的文献求助10
1分钟前
aaa完成签到,获得积分20
1分钟前
波恩奥本海默绝热近似完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
楠lalala发布了新的文献求助10
2分钟前
李健应助迷路竹采纳,获得10
2分钟前
坤坤完成签到,获得积分10
2分钟前
2分钟前
xcgh应助ylsk采纳,获得10
2分钟前
脑洞疼应助楠lalala采纳,获得10
2分钟前
冰雪痕发布了新的文献求助10
2分钟前
snowwww发布了新的文献求助20
2分钟前
3分钟前
平常安发布了新的文献求助10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得20
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
万能图书馆应助冰雪痕采纳,获得10
4分钟前
4分钟前
冰雪痕发布了新的文献求助10
4分钟前
小二郎应助慢走不宋女士采纳,获得10
4分钟前
酷波er应助Elysa采纳,获得10
4分钟前
4分钟前
冷静的梦芝完成签到 ,获得积分10
5分钟前
99668完成签到,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
田様应助秋日思语采纳,获得10
6分钟前
anders完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210497
求助须知:如何正确求助?哪些是违规求助? 4387298
关于积分的说明 13662653
捐赠科研通 4247146
什么是DOI,文献DOI怎么找? 2330125
邀请新用户注册赠送积分活动 1327877
关于科研通互助平台的介绍 1280484