Cooperative Motion Planning for Persistent 3D Visual Coverage With Multiple Quadrotor UAVs

强化学习 运动规划 计算机科学 弹道 地形 任务(项目管理) 人工智能 实时计算 模拟 数学优化 机器人 工程类 数学 系统工程 天文 生物 生态学 物理
作者
Hongpeng Wang,Shangyuan Song,Qiang-Hui Guo,Dian Xu,Xiaoyang Zhang,P. Wang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3374-3383 被引量:2
标识
DOI:10.1109/tase.2023.3279092
摘要

In this paper, we address the multiple quadrotor UAVs trajectory planning optimization problem for large-scale, persistent, high-depth visual coverage tasks in three-dimensional (3-D) terrain environment. To minimize the overall energy expenditure of the UAVs for accomplishing a task, we set up an air-to-ground collaborative system which introduces base stations to hold and recharge UAVs. The system is formulated as an integer programming, and solved by a novel hierarchical reinforcement learning trajectory planning algorithm (RL-TP), in which the paths are obtained by reinforcement learning method, and then the trajectories are obtained by Bézier curve method. Both simulation and physical experiments show that RL-TP can effectively improve the efficiency and persistence of aerial visual coverage task. Note to Practitioners —While the multi-rotor UAV has been an important means for field monitoring, it suffers the problem of short battery life a lot. To make it more efficient and persistent, we use multiple UAVs and introduce ground base stations to charge the UAVs. The scenario is formulated as an air-to-ground collaborative system, and the motion planning strategy is to minimize the energy consumption. We propose a hierarchical collaborative coverage reinforcement learning trajectory planning algorithm (RL-TP) to solve it. We carry out both simulation and physical field experiments, and compare RL-TP with other popular methods. The experimental results show that the system is feasible and RL-TP performs well in both time efficiency and energy consumption. In future research, we will introduce unmanned ground vehicles to replace the stationary ground base stations to make the air-to-ground collaborative system more powerful and flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助yafen采纳,获得10
1秒前
jingcheng完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
共享精神应助傲娇的曼香采纳,获得10
6秒前
6秒前
Fossette完成签到,获得积分10
7秒前
7秒前
小黑猫跑酷完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
科研通AI6.1应助马洛采纳,获得10
8秒前
8秒前
8秒前
9秒前
hjy完成签到,获得积分10
9秒前
Waiting发布了新的文献求助10
10秒前
11秒前
快乐冰之发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
路见不平发布了新的文献求助30
12秒前
12秒前
风清扬发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助科研鸟采纳,获得10
13秒前
雷朋久久发布了新的文献求助10
13秒前
13秒前
14秒前
楚明允发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
Bazinga发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
传奇3应助lizhiqian2024采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753740
求助须知:如何正确求助?哪些是违规求助? 5482722
关于积分的说明 15378869
捐赠科研通 4892622
什么是DOI,文献DOI怎么找? 2631405
邀请新用户注册赠送积分活动 1579422
关于科研通互助平台的介绍 1535129