重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

电池(电) 杠杆(统计) 计算机科学 人工神经网络 荷电状态 人工智能 航程(航空) 过程(计算) 机器学习 深度学习 工程类 物理 量子力学 操作系统 航空航天工程 功率(物理)
作者
Soumya Singh,Yvonne Eboumbou Ebongue,Shahed Rezaei,Kai Peter Birke
出处
期刊:Batteries [MDPI AG]
卷期号:9 (6): 301-301 被引量:62
标识
DOI:10.3390/batteries9060301
摘要

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJJZZX发布了新的文献求助10
1秒前
许小六发布了新的文献求助10
1秒前
1秒前
不怕热的雪糕完成签到,获得积分10
1秒前
深情安青应助学术小白铼采纳,获得10
1秒前
卿落完成签到,获得积分10
2秒前
2秒前
标致金毛发布了新的文献求助10
2秒前
2秒前
2秒前
孝顺的觅风完成签到 ,获得积分10
2秒前
2秒前
Orange应助hehexi采纳,获得10
3秒前
积极大门发布了新的文献求助10
3秒前
赵文龙完成签到,获得积分10
4秒前
赘婿应助克里斯采纳,获得10
4秒前
打打应助巴黎的防采纳,获得10
4秒前
充电宝应助古木采纳,获得10
5秒前
5秒前
Monica发布了新的文献求助10
5秒前
耍酷的梦之完成签到,获得积分10
5秒前
5秒前
超级芊驰大王完成签到,获得积分10
6秒前
隐形曼青应助周彬超采纳,获得10
6秒前
憨厚波涛完成签到,获得积分10
6秒前
赵文龙发布了新的文献求助30
6秒前
坦率灵槐发布了新的文献求助10
7秒前
淡定从凝发布了新的文献求助80
7秒前
7秒前
7秒前
打打应助虚幻的不评采纳,获得10
8秒前
8秒前
8秒前
幽默尔蓝发布了新的文献求助10
9秒前
9秒前
喜洋羊发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
我是老大应助尹浩宇采纳,获得10
9秒前
昏睡的炎彬完成签到,获得积分10
10秒前
wsx完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516