已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

电池(电) 杠杆(统计) 计算机科学 人工神经网络 荷电状态 人工智能 航程(航空) 过程(计算) 机器学习 深度学习 工程类 物理 量子力学 操作系统 航空航天工程 功率(物理)
作者
Soumya Singh,Yvonne Eboumbou Ebongue,Shahed Rezaei,Kai Peter Birke
出处
期刊:Batteries [MDPI AG]
卷期号:9 (6): 301-301 被引量:13
标识
DOI:10.3390/batteries9060301
摘要

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
大个应助shinepat采纳,获得10
7秒前
阔达的水壶完成签到 ,获得积分10
9秒前
ww发布了新的文献求助10
10秒前
wykion完成签到,获得积分10
12秒前
14秒前
hello2001完成签到 ,获得积分10
20秒前
20秒前
22秒前
24秒前
DLDL发布了新的文献求助10
25秒前
十一完成签到,获得积分10
25秒前
Jiaowen发布了新的文献求助10
26秒前
充电宝应助ww采纳,获得10
28秒前
28秒前
29秒前
善学以致用应助Nacy采纳,获得10
30秒前
十一发布了新的文献求助10
31秒前
sgs2024应助唐宋八大家采纳,获得10
32秒前
33秒前
36秒前
叶枫完成签到 ,获得积分10
38秒前
39秒前
prigogin完成签到,获得积分10
39秒前
40秒前
42秒前
口外彭于晏完成签到,获得积分10
42秒前
洸彦完成签到 ,获得积分10
43秒前
Nacy发布了新的文献求助10
45秒前
tyd完成签到 ,获得积分10
46秒前
ww发布了新的文献求助10
47秒前
48秒前
情怀应助自治自律自洽采纳,获得10
48秒前
55秒前
小巧问芙完成签到 ,获得积分10
59秒前
许中原完成签到,获得积分10
59秒前
59秒前
Ava应助ww采纳,获得10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265391
求助须知:如何正确求助?哪些是违规求助? 2905440
关于积分的说明 8333770
捐赠科研通 2575720
什么是DOI,文献DOI怎么找? 1400099
科研通“疑难数据库(出版商)”最低求助积分说明 654693
邀请新用户注册赠送积分活动 633509