Hybrid Modeling of Lithium-Ion Battery: Physics-Informed Neural Network for Battery State Estimation

电池(电) 杠杆(统计) 计算机科学 人工神经网络 荷电状态 人工智能 航程(航空) 过程(计算) 机器学习 深度学习 工程类 物理 量子力学 操作系统 航空航天工程 功率(物理)
作者
Soumya Singh,Yvonne Eboumbou Ebongue,Shahed Rezaei,Kai Peter Birke
出处
期刊:Batteries [Multidisciplinary Digital Publishing Institute]
卷期号:9 (6): 301-301 被引量:26
标识
DOI:10.3390/batteries9060301
摘要

Accurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助tianyue采纳,获得10
1秒前
Wow发布了新的文献求助10
2秒前
2秒前
大模型应助lyric采纳,获得10
4秒前
4秒前
Dexter完成签到 ,获得积分10
5秒前
5秒前
liyu完成签到 ,获得积分10
5秒前
5秒前
6秒前
晓豪完成签到,获得积分20
6秒前
aqiuyuehe发布了新的文献求助10
6秒前
1轻微完成签到,获得积分10
6秒前
吴学仕完成签到,获得积分10
8秒前
8秒前
Cinderella发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
时尚俊驰发布了新的文献求助10
9秒前
10秒前
wanci应助晓豪采纳,获得10
10秒前
科研通AI5应助fx采纳,获得10
11秒前
浮游应助艾妮吗采纳,获得10
12秒前
哈哈发布了新的文献求助10
12秒前
yangyangyang发布了新的文献求助10
13秒前
aqiuyuehe发布了新的文献求助10
14秒前
14秒前
大个应助ccc采纳,获得30
14秒前
Nevermind218关注了科研通微信公众号
14秒前
15秒前
善学以致用应助yulu采纳,获得10
15秒前
Akim应助爱听歌的人达采纳,获得10
15秒前
蜒栩柚子完成签到 ,获得积分10
16秒前
有点意思完成签到,获得积分10
16秒前
17秒前
小蘑菇应助xzh采纳,获得10
17秒前
17秒前
18秒前
19秒前
大意的安白完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4605700
求助须知:如何正确求助?哪些是违规求助? 4013370
关于积分的说明 12427232
捐赠科研通 3694209
什么是DOI,文献DOI怎么找? 2036815
邀请新用户注册赠送积分活动 1069756
科研通“疑难数据库(出版商)”最低求助积分说明 953990