已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 古生物学 生物化学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:54
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的曼香完成签到,获得积分10
刚刚
wenxy发布了新的文献求助10
5秒前
dingm2发布了新的文献求助30
5秒前
阿黎完成签到,获得积分10
6秒前
冰西瓜完成签到 ,获得积分0
6秒前
完美世界应助冷酷的如松采纳,获得10
8秒前
asd1576562308完成签到 ,获得积分10
9秒前
sxb10101完成签到 ,获得积分0
9秒前
11秒前
mm发布了新的文献求助10
14秒前
15秒前
点点完成签到,获得积分10
16秒前
虚心的幻梅完成签到 ,获得积分10
16秒前
17秒前
nc完成签到 ,获得积分10
17秒前
17秒前
从烷烃开始重新生长完成签到,获得积分10
19秒前
隐形曼青应助sujinyu采纳,获得10
19秒前
AnyYuan发布了新的文献求助10
21秒前
Hilda007发布了新的文献求助10
21秒前
Orange应助懒羊羊采纳,获得10
22秒前
傲骨完成签到 ,获得积分10
23秒前
mist完成签到 ,获得积分10
24秒前
25秒前
浪里白条发布了新的文献求助10
25秒前
科研天才完成签到 ,获得积分10
27秒前
28秒前
阿楷发布了新的文献求助10
30秒前
tough_cookie完成签到 ,获得积分10
33秒前
34秒前
35秒前
L1完成签到 ,获得积分10
36秒前
科研通AI6.1应助wodeqiche2007采纳,获得10
36秒前
vincentyang发布了新的文献求助10
37秒前
QinMengyao发布了新的文献求助10
38秒前
38秒前
38秒前
cc完成签到 ,获得积分10
41秒前
41秒前
懒羊羊发布了新的文献求助10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787903
求助须知:如何正确求助?哪些是违规求助? 5702431
关于积分的说明 15473009
捐赠科研通 4916130
什么是DOI,文献DOI怎么找? 2646159
邀请新用户注册赠送积分活动 1593838
关于科研通互助平台的介绍 1548165