Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 生物化学 古生物学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:21
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
joysa完成签到,获得积分10
刚刚
131343完成签到,获得积分10
刚刚
FashionBoy应助慕子采纳,获得10
1秒前
1秒前
1秒前
L龙发布了新的文献求助10
2秒前
2秒前
善学以致用应助sunwending采纳,获得10
2秒前
东郭秋凌完成签到,获得积分10
2秒前
胤宸完成签到,获得积分10
3秒前
4秒前
4秒前
hohokuz完成签到,获得积分20
4秒前
一切顺遂应助Adian采纳,获得100
4秒前
4秒前
April发布了新的文献求助20
5秒前
Huaiman发布了新的文献求助10
6秒前
科研通AI5应助转角一起走采纳,获得20
6秒前
蛋炒饭完成签到,获得积分10
7秒前
执着完成签到,获得积分10
7秒前
研友_ED5GK发布了新的文献求助10
7秒前
8秒前
绿麦盲区完成签到,获得积分10
8秒前
Yvonne发布了新的文献求助10
8秒前
9秒前
9秒前
minghanl完成签到,获得积分10
10秒前
zhaomr发布了新的文献求助10
10秒前
科目三应助pbf采纳,获得20
11秒前
11秒前
11秒前
same完成签到,获得积分10
12秒前
科研通AI5应助俭朴夜雪采纳,获得30
12秒前
读研好难发布了新的文献求助10
13秒前
Adian完成签到,获得积分10
14秒前
Huaiman完成签到,获得积分10
14秒前
OvO完成签到,获得积分10
14秒前
expuery完成签到,获得积分10
14秒前
sunwending发布了新的文献求助10
14秒前
蒋时晏应助Lam采纳,获得30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762