Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 生物化学 古生物学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:21
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助淡定凛采纳,获得10
2秒前
3秒前
大叉烧完成签到,获得积分10
4秒前
5秒前
可爱的函函应助炙心采纳,获得10
6秒前
7秒前
大方的面包完成签到,获得积分20
8秒前
学术草履虫关注了科研通微信公众号
9秒前
xiong_mandy完成签到 ,获得积分10
11秒前
12秒前
12秒前
斯文的老鼠完成签到 ,获得积分10
13秒前
我是老大应助lxlcx采纳,获得10
14秒前
Dean完成签到 ,获得积分10
14秒前
Akim应助YIN采纳,获得10
17秒前
18秒前
SaSa发布了新的文献求助10
18秒前
19秒前
通~发布了新的文献求助10
22秒前
23秒前
23秒前
典雅碧空发布了新的文献求助10
23秒前
爆米花应助典雅碧空采纳,获得30
26秒前
mint发布了新的文献求助10
26秒前
脑洞疼应助Youngsy采纳,获得10
26秒前
27秒前
尔东发布了新的文献求助10
27秒前
无限盼旋完成签到,获得积分10
27秒前
YIN发布了新的文献求助10
28秒前
吃猫的鱼发布了新的文献求助10
28秒前
28秒前
29秒前
小胖子完成签到 ,获得积分10
29秒前
songsssssj完成签到 ,获得积分10
30秒前
AnJaShua完成签到 ,获得积分10
30秒前
SciGPT应助自由的枕头采纳,获得10
30秒前
31秒前
32秒前
科研通AI2S应助快乐尔珍采纳,获得30
32秒前
qiu发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905