已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework

肾透明细胞癌 转录组 背景(考古学) 基因签名 计算生物学 医学 精密医学 列线图 个性化医疗 免疫疗法 生物信息学 机器学习 肾细胞癌 肿瘤科 癌症 计算机科学 基因 生物 基因表达 内科学 病理 古生物学 生物化学
作者
Jinsong Liu,Yanjia Shi,Yuxin Zhang
出处
期刊:The Epma Journal [Springer Nature]
卷期号:14 (2): 275-305 被引量:54
标识
DOI:10.1007/s13167-023-00327-3
摘要

Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
么么完成签到,获得积分10
1秒前
妙旋克里斯完成签到,获得积分10
2秒前
3秒前
赘婿应助火星上的闭月采纳,获得10
4秒前
wlikef完成签到,获得积分10
4秒前
小何完成签到,获得积分10
5秒前
在水一方应助xixi采纳,获得30
5秒前
5秒前
奂毛发布了新的文献求助10
5秒前
ddd发布了新的文献求助10
6秒前
7秒前
罗皮特完成签到 ,获得积分10
7秒前
你好棒呀完成签到,获得积分10
7秒前
KUAILIZI完成签到,获得积分10
8秒前
陈欣瑶完成签到 ,获得积分10
8秒前
小何发布了新的文献求助10
8秒前
起风了完成签到 ,获得积分10
9秒前
111发布了新的文献求助10
9秒前
orixero应助美索不达米亚采纳,获得10
10秒前
syjssxwz完成签到,获得积分10
11秒前
王一鸣完成签到 ,获得积分10
11秒前
小龙完成签到,获得积分10
12秒前
12秒前
追寻夜香完成签到 ,获得积分10
13秒前
Brain完成签到 ,获得积分10
13秒前
16秒前
111完成签到,获得积分20
16秒前
meiqi完成签到 ,获得积分10
17秒前
奔跑的小熊完成签到 ,获得积分10
18秒前
着急的青枫应助zyf采纳,获得10
19秒前
鬼笔环肽完成签到 ,获得积分10
24秒前
刘鑫慧完成签到 ,获得积分10
24秒前
24秒前
xixi完成签到,获得积分10
24秒前
阔口阔落发布了新的文献求助10
28秒前
29秒前
lx完成签到 ,获得积分10
29秒前
奕雨完成签到,获得积分10
30秒前
同行完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590158
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794757
捐赠科研通 4630578
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576