已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 计算机网络 化学 物理 高分子化学 光学 程序设计语言
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:6
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伤心葫芦娃完成签到 ,获得积分10
1秒前
2秒前
星星完成签到,获得积分10
2秒前
泥泞o发布了新的文献求助10
6秒前
领导范儿应助青阳采纳,获得10
6秒前
5160完成签到,获得积分10
8秒前
乐研客完成签到,获得积分10
9秒前
11秒前
星星2完成签到,获得积分10
11秒前
FleeToMars完成签到 ,获得积分10
12秒前
小洁完成签到 ,获得积分10
12秒前
bji完成签到,获得积分10
14秒前
yige完成签到,获得积分10
15秒前
吃草草没完成签到 ,获得积分10
15秒前
17秒前
李晓萌发布了新的文献求助10
17秒前
天宇南神完成签到 ,获得积分10
17秒前
顾矜应助xxhxx采纳,获得10
17秒前
量子星尘发布了新的文献求助10
19秒前
hjc完成签到,获得积分10
22秒前
sailingluwl完成签到,获得积分10
23秒前
25秒前
Rae完成签到 ,获得积分10
27秒前
luster完成签到 ,获得积分10
27秒前
moonlight完成签到,获得积分10
28秒前
天使她男人完成签到,获得积分10
30秒前
小迷糊完成签到 ,获得积分10
30秒前
993494543完成签到,获得积分10
31秒前
32秒前
33秒前
lhq完成签到 ,获得积分10
34秒前
35秒前
Suttier完成签到 ,获得积分10
36秒前
xxhxx发布了新的文献求助10
38秒前
Yesyes完成签到,获得积分10
39秒前
舒心的草莓完成签到 ,获得积分20
39秒前
zxcv1发布了新的文献求助10
40秒前
40秒前
健康的小鸽子完成签到 ,获得积分10
42秒前
爱撒娇的妙竹完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704