已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 物理 化学 高分子化学 光学 程序设计语言 计算机网络
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:6
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待映阳完成签到 ,获得积分10
刚刚
早早发布了新的文献求助10
1秒前
2秒前
2秒前
VDC应助Yeyeye采纳,获得30
4秒前
彭于晏应助朱冰蓝采纳,获得10
4秒前
4秒前
酷波er应助ahaa采纳,获得10
6秒前
za发布了新的文献求助10
7秒前
XMC2022发布了新的文献求助10
7秒前
10秒前
充电宝应助罗大壮采纳,获得10
10秒前
WWW完成签到 ,获得积分10
10秒前
多喝温水完成签到 ,获得积分10
10秒前
11秒前
wise111发布了新的文献求助10
11秒前
12秒前
李爱国应助za采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得30
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
正直乘云发布了新的文献求助10
14秒前
XMC2022完成签到,获得积分10
15秒前
15秒前
aloha01发布了新的文献求助10
15秒前
suy发布了新的文献求助10
16秒前
17秒前
19秒前
二二春完成签到,获得积分10
19秒前
万默完成签到 ,获得积分10
19秒前
Dr.Wei完成签到,获得积分10
21秒前
罗大壮发布了新的文献求助10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448