BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 物理 化学 高分子化学 光学 程序设计语言 计算机网络
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:4
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助未来星采纳,获得10
刚刚
研友_VZG7GZ应助liuker采纳,获得30
1秒前
2秒前
3秒前
slotus完成签到,获得积分10
3秒前
3秒前
4秒前
糊糊完成签到 ,获得积分10
4秒前
聚散流沙完成签到,获得积分10
5秒前
5秒前
6秒前
爱吃香菜完成签到,获得积分10
7秒前
9秒前
义气的如豹完成签到,获得积分10
10秒前
10秒前
HYT发布了新的文献求助10
10秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
今后应助xml采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
12秒前
英俊的铭应助科研通管家采纳,获得150
12秒前
ED应助科研通管家采纳,获得10
12秒前
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
12秒前
Sober完成签到,获得积分10
12秒前
12秒前
RX信发布了新的文献求助10
13秒前
梅子酒发布了新的文献求助10
13秒前
无心的紫山完成签到,获得积分10
13秒前
14秒前
烟花应助预锂化大王采纳,获得10
19秒前
姚开元发布了新的文献求助10
20秒前
huohuo完成签到,获得积分10
22秒前
双景完成签到,获得积分10
23秒前
24秒前
酷波er应助zeze采纳,获得10
24秒前
风清扬发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710