BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 计算机网络 化学 物理 高分子化学 光学 程序设计语言
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:6
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然水绿完成签到,获得积分10
刚刚
jiali完成签到,获得积分10
1秒前
小王发布了新的文献求助10
1秒前
无花果应助饼饼采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
李健的小迷弟应助tiezhu采纳,获得10
2秒前
liuqiuyue完成签到,获得积分10
2秒前
李健应助林家小弟采纳,获得10
2秒前
jy完成签到,获得积分10
2秒前
Bieshiyuan完成签到,获得积分10
3秒前
mmm完成签到,获得积分10
3秒前
4秒前
小新发布了新的文献求助10
4秒前
默默的乘风完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
无极微光应助123456采纳,获得30
5秒前
5秒前
6秒前
小李博士发布了新的文献求助10
6秒前
6秒前
偷马桶发布了新的文献求助10
6秒前
科研通AI6应助fengge采纳,获得10
6秒前
7秒前
空白发布了新的文献求助10
7秒前
矮小的茹妖完成签到 ,获得积分10
8秒前
万能图书馆应助冯潮生采纳,获得10
8秒前
Mars完成签到,获得积分10
9秒前
9秒前
坚守初心发布了新的文献求助10
9秒前
9秒前
田様应助淡淡寻菡采纳,获得10
9秒前
depurge完成签到,获得积分10
9秒前
明月完成签到,获得积分10
9秒前
领导范儿应助CT采纳,获得10
9秒前
kyrry完成签到,获得积分10
10秒前
阿达关注了科研通微信公众号
10秒前
aaaaaawwwww发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546362
求助须知:如何正确求助?哪些是违规求助? 4632240
关于积分的说明 14625801
捐赠科研通 4573926
什么是DOI,文献DOI怎么找? 2507874
邀请新用户注册赠送积分活动 1484511
关于科研通互助平台的介绍 1455714