BCAN: Bidirectional Correct Attention Network for Cross-Modal Retrieval

计算机科学 桥接(联网) 光学(聚焦) 嵌入 语义鸿沟 情态动词 注意力网络 人工智能 自然语言处理 语义学(计算机科学) 相似性(几何) 模式识别(心理学) 图像(数学) 图像检索 物理 化学 高分子化学 光学 程序设计语言 计算机网络
作者
Yang Liu,Hong Liu,Huaqiu Wang,Fanyang Meng,Mengyuan Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (10): 14247-14258 被引量:3
标识
DOI:10.1109/tnnls.2023.3276796
摘要

As a fundamental topic in bridging the gap between vision and language, cross-modal retrieval purposes to obtain the correspondences' relationship between fragments, i.e., subregions in images and words in texts. Compared with earlier methods that focus on learning the visual semantic embedding from images and sentences to the shared embedding space, the existing methods tend to learn the correspondences between words and regions via cross-modal attention. However, such attention-based approaches invariably result in semantic misalignment between subfragments for two reasons: 1) without modeling the relationship between subfragments and the semantics of the entire images or sentences, it will be hard for such approaches to distinguish images or sentences with multiple same semantic fragments and 2) such approaches focus attention evenly on all subfragments, including nonvisual words and a lot of redundant regions, which also will face the problem of semantic misalignment. To solve these problems, this article proposes a bidirectional correct attention network (BCAN), which introduces a novel concept of the relevance between subfragments and the semantics of the entire images or sentences and designs a novel correct attention mechanism by modeling the local and global similarity between images and sentences to correct the attention weights focused on the wrong fragments. Specifically, we introduce a concept about the semantic relationship between subfragments and entire images or sentences and use this concept to solve the semantic misalignment from two aspects. In our correct attention mechanism, we design two independent units to correct the weight of attention focused on the wrong fragments. Global correct unit (GCU) with modeling the global similarity between images and sentences into the attention mechanism to solve the semantic misalignment problem caused by focusing attention on relevant subfragments in irrelevant pairs (RI) and the local correct unit (LCU) consider the difference in the attention weights between fragments among two steps to solve the semantic misalignment problem caused by focusing attention on irrelevant subfragments in relevant pairs (IR). Extensive experiments on large-scale MS-COCO and Flickr30K show that our proposed method outperforms all the attention-based methods and is competitive to the state-of-the-art. Our code and pretrained model are publicly available at: https://github.com/liuyyy111/BCAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liuwei采纳,获得10
刚刚
aaefv完成签到,获得积分10
刚刚
小小菜鸟发布了新的文献求助10
刚刚
深情安青应助123采纳,获得10
刚刚
赫初晴完成签到 ,获得积分10
刚刚
平淡的亦丝应助明研采纳,获得20
刚刚
2秒前
库外发布了新的文献求助10
3秒前
汉堡包应助清新的冷松采纳,获得10
3秒前
从心应助LiShin采纳,获得10
3秒前
帅气的听莲完成签到,获得积分10
3秒前
英姑应助Areslcy采纳,获得10
3秒前
善学以致用应助zxz采纳,获得10
4秒前
whatever应助luoshi采纳,获得10
5秒前
5秒前
科研通AI5应助徐徐采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
Lucas应助MADKAI采纳,获得10
6秒前
Vii应助MADKAI采纳,获得10
6秒前
李爱国应助MADKAI采纳,获得10
6秒前
李健应助MADKAI采纳,获得10
6秒前
烟花应助MADKAI采纳,获得20
6秒前
香蕉觅云应助MADKAI采纳,获得10
6秒前
科研通AI2S应助MADKAI采纳,获得10
6秒前
Singularity应助MADKAI采纳,获得10
6秒前
7秒前
7秒前
赘婿应助GGZ采纳,获得10
7秒前
阿盛完成签到,获得积分10
7秒前
7秒前
怕孤单的含羞草完成签到 ,获得积分10
8秒前
Muuu发布了新的文献求助10
8秒前
仁爱的乐枫完成签到,获得积分10
9秒前
9秒前
金润完成签到,获得积分10
10秒前
ZZ完成签到,获得积分10
10秒前
AteeqBaloch发布了新的文献求助10
11秒前
PaulLao完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762