Mapping the deepfake landscape for innovation: A multidisciplinary systematic review and future research agenda

多学科方法 奖学金 价值(数学) 系统回顾 工程伦理学 社会学 计算机科学 社会科学 政治学 梅德林 工程类 机器学习 法学
作者
Lucas Whittaker,Rory Mulcahy,Kate Letheren,Jan Kietzmann,Rebekah Russell‐Bennett
出处
期刊:Technovation [Elsevier]
卷期号:125: 102784-102784 被引量:31
标识
DOI:10.1016/j.technovation.2023.102784
摘要

Deepfakes are an emerging communication innovation possessing vast implications for innovation scholarship. A systematic literature review of multidisciplinary literature was undertaken to assess existing deepfake definitions and synthesize a new definition to guide future theoretical development and empirical understanding of this communication innovation. Further, the systematic review identifies deepfake creators and those depicted by deepfakes and evaluates value creation and destruction implications of deepfakes for customers and organizations. Following the PRISMA protocol, this review evaluates deepfake research published between January 2017 and June 2021 across five databases, including only English literature from Q1/Q2 peer-reviewed journals. Eighty research articles were included in the final review. Using text mining software, a new deepfake definition is synthesized which encompasses the emerging concepts of "videos", "audio", "realistic", "fake", "artificial", "learning", "media", and "saying". Undetermined actors and individual content creators were most commonly identified as deepfake creators, whereas public figures, celebrities, and actors were most frequently depicted by deepfakes. Deepfakes potentially create and destroy value for customers and organizations. This study provides a new, holistic multidisciplinary definition of deepfakes, offers fresh insights into the use and impact of deepfakes as a communication innovation, and provides a new understanding of the value implications derived from deepfakes for innovation. Lastly, a future deepfake research agenda for innovation scholars is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助yxc采纳,获得10
1秒前
1秒前
丘比特应助Michelle采纳,获得10
2秒前
英俊的铭应助小雏菊采纳,获得10
2秒前
2秒前
2秒前
3秒前
希望天下0贩的0应助TT采纳,获得10
4秒前
4秒前
huangweiwei发布了新的文献求助10
4秒前
pp发布了新的文献求助10
4秒前
6秒前
领导范儿应助丸子采纳,获得10
6秒前
6秒前
7秒前
7秒前
魔芋爽完成签到,获得积分10
7秒前
7秒前
小欣发布了新的文献求助10
8秒前
8秒前
水水完成签到 ,获得积分10
8秒前
超帅冬易发布了新的文献求助10
10秒前
11秒前
王永详发布了新的文献求助10
11秒前
闪闪蓝天应助晴天漫漫采纳,获得10
11秒前
牙牙发布了新的文献求助10
12秒前
ramu发布了新的文献求助10
13秒前
Hello应助坚守初心采纳,获得10
14秒前
Artemis完成签到,获得积分10
15秒前
橘子完成签到,获得积分10
15秒前
16秒前
何雨洋发布了新的文献求助10
16秒前
16秒前
16秒前
科研通AI2S应助天行健采纳,获得10
17秒前
布丁完成签到 ,获得积分10
17秒前
17秒前
科研通AI5应助cloud采纳,获得30
18秒前
rainsy发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524827
求助须知:如何正确求助?哪些是违规求助? 3105639
关于积分的说明 9275413
捐赠科研通 2802884
什么是DOI,文献DOI怎么找? 1538217
邀请新用户注册赠送积分活动 716120
科研通“疑难数据库(出版商)”最低求助积分说明 709230