An artificial intelligence's interpretation of complex high-resolution in situ transmission electron microscopy data

原位 材料科学 透射电子显微镜 纳米技术 计算机科学 人工智能 生物系统 化学 有机化学 生物
作者
Xingzhi Wang,Chang Yan,Justin C. Ondry,Peter Ercius,A. Paul Alivisatos
标识
DOI:10.26434/chemrxiv-2023-p1pc4-v2
摘要

In situ transmission electron microscopy (TEM) has enabled researchers to visualize complicated nano- and atomic-scale processes with sub-Angstrom spatial resolution and millisecond time resolution. These processes are often highly dynamical and can be time-consuming to analyze and interpret. Here, we report how variational autoencoders (VAEs), a deep learning algorithm, can provide an artificial intelligence’s interpretation of high-resolution in situ TEM data by condensing and deconvoluting complicated atomic-scale dynamics into a latent space with reduced dimensionality. In this work, we designed a VAEs model with high latent dimensions capable of deconvoluting information from complex high-resolution TEM data. We demonstrate how this model with high latent dimensions trained on atomically resolved TEM images of lead sulfide (PbS) nanocrystals is able to capture movements and perturbations of periodic lattices in both simulated and real in situ TEM data. The VAEs model shows capability of detecting and deconvoluting dynamical nanoscale physical processes, such as the rotation of crystal lattices and intraparticle ripening during the annealing of semiconductor nanocrystals. With the help of the VAEs model, we can identify an in situ observation that can serve as a direct experimental evidence of the existence of intraparticle ripening. The VAEs model provides a potent tool for facilitating the analysis and interpretation of complex in situ TEM data as a part of an autonomous experimental workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
朱zhu发布了新的文献求助200
2秒前
努恩完成签到,获得积分10
2秒前
小龅牙吖完成签到,获得积分10
3秒前
ding应助叁月二采纳,获得10
3秒前
黄芩完成签到 ,获得积分10
4秒前
茴茴完成签到 ,获得积分10
4秒前
smiling发布了新的文献求助10
4秒前
整齐小猫咪完成签到,获得积分10
4秒前
4秒前
火山上的鲍师傅完成签到,获得积分10
7秒前
8秒前
程哲瀚完成签到,获得积分10
10秒前
浮光完成签到,获得积分10
10秒前
小猛哥完成签到,获得积分10
10秒前
钰宁完成签到,获得积分10
11秒前
jiangcai完成签到,获得积分10
12秒前
dssouc发布了新的文献求助10
12秒前
呵呵呵呵完成签到,获得积分10
12秒前
JamesPei应助苹果发夹采纳,获得10
13秒前
小化化爱学习完成签到,获得积分10
13秒前
柳煜城完成签到,获得积分10
14秒前
负数完成签到,获得积分10
15秒前
shuzi发布了新的文献求助10
15秒前
16秒前
Brendan完成签到,获得积分10
16秒前
16秒前
ll2925203完成签到,获得积分10
16秒前
mcl关闭了mcl文献求助
16秒前
东耦完成签到,获得积分10
17秒前
17秒前
思源应助小猛哥采纳,获得10
17秒前
苹果小蜜蜂完成签到,获得积分10
18秒前
whyme完成签到,获得积分10
18秒前
lily完成签到 ,获得积分10
19秒前
Dragon完成签到 ,获得积分10
19秒前
yangzhang发布了新的文献求助10
21秒前
Bailan完成签到,获得积分10
22秒前
MY发布了新的文献求助10
22秒前
haohao完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259