Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis

肺癌 人工智能 医学诊断 无线电技术 分割 计算机科学 医学影像学 图像分割 腺癌 放射科 癌症 医学 机器学习 模式识别(心理学) 病理 内科学
作者
Bryce Dunn,Mariaelena Pierobon,Qi Wei
出处
期刊:Bioengineering [MDPI AG]
卷期号:10 (6): 690-690
标识
DOI:10.3390/bioengineering10060690
摘要

Artificial intelligence and emerging data science techniques are being leveraged to interpret medical image scans. Traditional image analysis relies on visual interpretation by a trained radiologist, which is time-consuming and can, to some degree, be subjective. The development of reliable, automated diagnostic tools is a key goal of radiomics, a fast-growing research field which combines medical imaging with personalized medicine. Radiomic studies have demonstrated potential for accurate lung cancer diagnoses and prognostications. The practice of delineating the tumor region of interest, known as segmentation, is a key bottleneck in the development of generalized classification models. In this study, the incremental multiple resolution residual network (iMRRN), a publicly available and trained deep learning segmentation model, was applied to automatically segment CT images collected from 355 lung cancer patients included in the dataset "Lung-PET-CT-Dx", obtained from The Cancer Imaging Archive (TCIA), an open-access source for radiological images. We report a failure rate of 4.35% when using the iMRRN to segment tumor lesions within plain CT images in the lung cancer CT dataset. Seven classification algorithms were trained on the extracted radiomic features and tested for their ability to classify different lung cancer subtypes. Over-sampling was used to handle unbalanced data. Chi-square tests revealed the higher order texture features to be the most predictive when classifying lung cancers by subtype. The support vector machine showed the highest accuracy, 92.7% (0.97 AUC), when classifying three histological subtypes of lung cancer: adenocarcinoma, small cell carcinoma, and squamous cell carcinoma. The results demonstrate the potential of AI-based computer-aided diagnostic tools to automatically diagnose subtypes of lung cancer by coupling deep learning image segmentation with supervised classification. Our study demonstrated the integrated application of existing AI techniques in the non-invasive and effective diagnosis of lung cancer subtypes, and also shed light on several practical issues concerning the application of AI in biomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助123采纳,获得10
刚刚
可爱的函函应助初晴采纳,获得10
刚刚
lianlian完成签到,获得积分10
刚刚
wen完成签到,获得积分10
刚刚
刚刚
1秒前
扎心应助李学谦采纳,获得10
1秒前
无私恋风发布了新的文献求助50
1秒前
1秒前
Wikz完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
小王快毕业应助端庄修杰采纳,获得50
4秒前
在水一方应助新八采纳,获得10
4秒前
5秒前
赤子白仙发布了新的文献求助10
5秒前
CodeCraft应助长情的月光采纳,获得10
6秒前
7秒前
无聊的老姆完成签到 ,获得积分10
7秒前
小橙子发布了新的文献求助10
7秒前
zl发布了新的文献求助30
8秒前
若E18应助平淡的巧荷采纳,获得10
8秒前
8秒前
南北应助整齐的不评采纳,获得10
8秒前
晨曦完成签到,获得积分10
8秒前
所所应助飘逸楷瑞采纳,获得30
10秒前
初晴完成签到,获得积分10
10秒前
ding应助Gilana采纳,获得10
11秒前
11秒前
12秒前
赤子白仙完成签到,获得积分10
13秒前
13秒前
ash发布了新的文献求助10
14秒前
14秒前
欣喜的姒发布了新的文献求助10
15秒前
彳亍1117应助shilong.yang采纳,获得20
15秒前
小洋同学可能不在完成签到,获得积分10
15秒前
Summer应助shilong.yang采纳,获得20
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152811
求助须知:如何正确求助?哪些是违规求助? 2804001
关于积分的说明 7856700
捐赠科研通 2461757
什么是DOI,文献DOI怎么找? 1310484
科研通“疑难数据库(出版商)”最低求助积分说明 629243
版权声明 601782