Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

医学 头痛 背景(考古学) 计算机科学 急诊科 短信 放射科 分类 核医学 万维网 外科 人工智能 古生物学 精神科 生物
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:19
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰坠于海应助lidd采纳,获得20
1秒前
lmlx发布了新的文献求助10
2秒前
QQ发布了新的文献求助10
2秒前
2秒前
聪慧的从丹完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
6秒前
Lekai发布了新的文献求助10
6秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
7秒前
spc68应助谨慎的寒松采纳,获得10
8秒前
Maestro_S应助aub采纳,获得10
8秒前
10秒前
gua完成签到,获得积分20
11秒前
11秒前
李煜琛完成签到 ,获得积分10
11秒前
12秒前
慕青应助落寞自中采纳,获得10
12秒前
酷波er应助李鸣笛采纳,获得10
12秒前
诚心芷巧完成签到,获得积分10
12秒前
14秒前
LaTeXer应助CQY采纳,获得30
14秒前
我是老大应助CQY采纳,获得10
14秒前
15秒前
15秒前
15秒前
大豹子发布了新的文献求助20
15秒前
体贴雪碧发布了新的文献求助10
16秒前
所所应助多情新蕾采纳,获得10
17秒前
17秒前
怡然的幻灵完成签到,获得积分10
18秒前
18秒前
18秒前
luna107发布了新的文献求助10
18秒前
文艺难破完成签到,获得积分20
18秒前
19秒前
鲸鱼发布了新的文献求助20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696