Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

开源 计算机科学 源模型 开源软件 短信 情报检索 自然语言处理 万维网 程序设计语言 软件 理论计算机科学
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:6
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bioli完成签到,获得积分10
刚刚
03210322完成签到 ,获得积分10
1秒前
Tracy发布了新的文献求助10
1秒前
cc完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
bilibala发布了新的文献求助10
2秒前
四月发布了新的文献求助10
2秒前
千里发布了新的文献求助10
2秒前
3秒前
蒙哥卡恩完成签到 ,获得积分10
4秒前
4秒前
6秒前
水生的鱼发布了新的文献求助10
6秒前
晶晶完成签到,获得积分10
7秒前
繁华发布了新的文献求助10
8秒前
8秒前
Zhihu发布了新的文献求助10
8秒前
PMA43完成签到,获得积分10
9秒前
千里完成签到,获得积分10
9秒前
koutianle完成签到 ,获得积分10
10秒前
冷静青易完成签到,获得积分10
11秒前
四月完成签到,获得积分10
11秒前
ark861023发布了新的文献求助10
12秒前
123发布了新的文献求助10
12秒前
13秒前
13秒前
小二郎应助平常心采纳,获得10
13秒前
LOST完成签到 ,获得积分10
13秒前
14秒前
14秒前
一彤展翅发布了新的文献求助30
16秒前
阿白完成签到 ,获得积分10
16秒前
yaoyaoyao发布了新的文献求助10
17秒前
落后凝雁完成签到,获得积分10
17秒前
锅子发布了新的文献求助10
19秒前
研友_8Qx0VZ发布了新的文献求助10
20秒前
111完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386