Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

医学 头痛 背景(考古学) 计算机科学 急诊科 短信 放射科 分类 核医学 万维网 外科 人工智能 生物 精神科 古生物学
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:19
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘生淮南完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
李健应助haojinxiu采纳,获得10
2秒前
2秒前
云端北栀完成签到,获得积分10
3秒前
可爱的冷霜完成签到,获得积分10
4秒前
mmyhn发布了新的文献求助10
5秒前
英吹斯挺应助猪猪hero采纳,获得10
5秒前
收手吧大哥应助猪猪hero采纳,获得10
5秒前
我不爱池鱼应助猪猪hero采纳,获得10
5秒前
5秒前
5秒前
5秒前
哈里发发布了新的文献求助10
7秒前
momo完成签到,获得积分10
8秒前
8秒前
彭于晏应助友好若南采纳,获得10
11秒前
Skye完成签到 ,获得积分10
12秒前
12秒前
刘刘发布了新的文献求助10
13秒前
tiankong发布了新的文献求助10
13秒前
14秒前
友好小刺猬完成签到,获得积分10
14秒前
15秒前
17秒前
可以发布了新的文献求助10
18秒前
18秒前
ZW发布了新的文献求助10
18秒前
tiankong完成签到,获得积分10
19秒前
LL完成签到,获得积分10
20秒前
lin发布了新的文献求助10
21秒前
可爱的函函应助欢喜采纳,获得10
24秒前
xie69完成签到,获得积分10
24秒前
张张完成签到,获得积分10
25秒前
我是来开会的完成签到,获得积分10
26秒前
FashionBoy应助PPP采纳,获得10
27秒前
27秒前
27秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954504
求助须知:如何正确求助?哪些是违规求助? 3500506
关于积分的说明 11099678
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786251
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801717