Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

医学 头痛 背景(考古学) 计算机科学 急诊科 短信 放射科 分类 核医学 万维网 外科 人工智能 古生物学 精神科 生物
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:18
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿粹发布了新的文献求助40
1秒前
1秒前
李子完成签到,获得积分10
1秒前
1秒前
槿萱发布了新的文献求助10
2秒前
LDM完成签到,获得积分10
2秒前
大家好车架号h完成签到,获得积分20
2秒前
2秒前
站走跑完成签到 ,获得积分10
2秒前
科研通AI5应助mio采纳,获得10
2秒前
Anna给Anna的求助进行了留言
2秒前
量子星尘发布了新的文献求助10
3秒前
大侦探皮卡丘完成签到,获得积分10
3秒前
杨帆完成签到,获得积分10
3秒前
3秒前
4秒前
Hello应助腼腆的洪纲采纳,获得10
4秒前
zz发布了新的文献求助30
4秒前
4秒前
chcmuer完成签到,获得积分10
5秒前
5秒前
5秒前
Xu发布了新的文献求助10
6秒前
6秒前
hhh发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
刘玲发布了新的文献求助10
8秒前
科研圣体发布了新的文献求助10
8秒前
WENDY关注了科研通微信公众号
8秒前
8秒前
hhh发布了新的文献求助10
9秒前
9秒前
我是老大应助贪玩手链采纳,获得10
9秒前
zhangpeng发布了新的文献求助10
9秒前
10秒前
小快乐完成签到,获得积分10
10秒前
敏感的星星完成签到,获得积分10
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809