Performance of an Open-Source Large Language Model in Extracting Information from Free-Text Radiology Reports

医学 头痛 背景(考古学) 计算机科学 急诊科 短信 放射科 分类 核医学 万维网 外科 人工智能 古生物学 精神科 生物
作者
Bastien Le Guellec,Alexandre Lefèvre,Charlotte Geay,Lucas Shorten,Cyril Bruge,Lotfi Hacein‐Bey,Philippe Amouyel,Jean‐Pierre Pruvo,Grégory Kuchcinski,Aghilès Hamroun
出处
期刊:Radiology [Radiological Society of North America]
卷期号:6 (4) 被引量:19
标识
DOI:10.1148/ryai.230364
摘要

Purpose To assess the performance of a local open-source large language model (LLM) in various information extraction tasks from real-life emergency brain MRI reports. Materials and Methods All consecutive emergency brain MRI reports written in 2022 from a French quaternary center were retrospectively reviewed. Two radiologists identified MRI scans that were performed in the emergency department for headaches. Four radiologists scored the reports' conclusions as either normal or abnormal. Abnormalities were labeled as either headache-causing or incidental. Vicuna (LMSYS Org), an open-source LLM, performed the same tasks. Vicuna's performance metrics were evaluated using the radiologists' consensus as the reference standard. Results Among the 2398 reports during the study period, radiologists identified 595 that included headaches in the indication (median age of patients, 35 years [IQR, 26-51 years]; 68% [403 of 595] women). A positive finding was reported in 227 of 595 (38%) cases, 136 of which could explain the headache. The LLM had a sensitivity of 98.0% (95% CI: 96.5, 99.0) and specificity of 99.3% (95% CI: 98.8, 99.7) for detecting the presence of headache in the clinical context, a sensitivity of 99.4% (95% CI: 98.3, 99.9) and specificity of 98.6% (95% CI: 92.2, 100.0) for the use of contrast medium injection, a sensitivity of 96.0% (95% CI: 92.5, 98.2) and specificity of 98.9% (95% CI: 97.2, 99.7) for study categorization as either normal or abnormal, and a sensitivity of 88.2% (95% CI: 81.6, 93.1) and specificity of 73% (95% CI: 62, 81) for causal inference between MRI findings and headache. Conclusion An open-source LLM was able to extract information from free-text radiology reports with excellent accuracy without requiring further training.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
美满的水卉完成签到,获得积分10
刚刚
仇敌克星完成签到,获得积分10
1秒前
qiaoxi完成签到,获得积分10
2秒前
ChemPhys完成签到 ,获得积分10
4秒前
秋风之墩完成签到,获得积分10
6秒前
xiaozhao123完成签到,获得积分20
9秒前
手握灵珠常奋笔完成签到,获得积分10
11秒前
regene完成签到,获得积分10
11秒前
应急食品完成签到,获得积分10
11秒前
12秒前
XIAOJU_U完成签到 ,获得积分10
15秒前
简奥斯汀完成签到 ,获得积分10
16秒前
xiaozhao123发布了新的文献求助10
19秒前
Sleven完成签到,获得积分10
21秒前
xzgwbh完成签到,获得积分10
25秒前
阜睿完成签到 ,获得积分10
28秒前
一个漂流瓶完成签到,获得积分10
28秒前
wzt发布了新的文献求助10
29秒前
tetrakis完成签到,获得积分10
33秒前
jfeng完成签到,获得积分10
36秒前
莓啤汽完成签到 ,获得积分10
36秒前
米博士完成签到,获得积分10
39秒前
mayberichard完成签到,获得积分10
39秒前
斯文远望完成签到,获得积分10
40秒前
test07完成签到,获得积分10
42秒前
nusiew完成签到,获得积分10
44秒前
ZHZ完成签到,获得积分10
44秒前
郑成灿完成签到 ,获得积分10
44秒前
陈一完成签到,获得积分10
46秒前
优雅的千雁完成签到,获得积分10
55秒前
55秒前
muzi完成签到,获得积分10
56秒前
etrh完成签到 ,获得积分10
59秒前
59秒前
桃子完成签到 ,获得积分10
1分钟前
lili完成签到 ,获得积分10
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
Haibrar完成签到 ,获得积分10
1分钟前
da49完成签到,获得积分10
1分钟前
罗马没有马完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559