已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Elucidating the formation mechanisms of the parasitic channel with buffer-free GaN/Si hetero-bonding structures

缓冲器(光纤) 光电子学 材料科学 宽禁带半导体 频道(广播) 纳米技术 化学 计算机科学 计算机网络 电信
作者
Hangning Shi,Jiaxin Ding,Qingcheng Qin,Ailun Yi,J. D. Sun,Tadatomo Suga,Juemin Yi,Jianfeng Wang,Ke Xu,Min Zhou,Kai Huang,Tiangui You,Xin Ou
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (19)
标识
DOI:10.1063/5.0188656
摘要

Driven by the increasing demand for 5G communication, GaN radio frequency (RF) device on Si technology has been flourishing attributable to the large size, low cost, and compatibility with complementary metal–oxide–semiconductor technology. However, a significant challenge is that a high-conductance parasitic channel forms at the interface between the III-N epitaxial layers and the Si substrate, leading to severe RF loss, which has been considerably impairing both the performance and advancement of RF GaN-on-Si technologies. Despite continuing controversies concerning the physical mechanisms engendering the parasitic channel, clarification is critically needed. Standing apart from traditional studies on RF loss in III-N epilayers grown on Si, this article comprehensively investigates the bonding interface of GaN thin film and Si(100) substrate realized via direct surface activated bonding and ion-cutting technologies. It was clearly determined that substantial diffusion of gallium (Ga) atoms into the Si substrate at the bonding interface occurred even at an annealing temperature as low as 350 °C. Subsequent high-temperature post-annealing at 800 °C intensified this diffusion, activating Ga atoms to form a p-type highly conductive parasitic channel. Simultaneously, it triggered Ga atoms aggregation and incited melt-back etching within the Si substrate at the interface. Contrasting with the conventional hetero-epitaxy, this study presents a compelling view based on the bonding technique. It conclusively elucidates the physical mechanisms of the formation of the primary source of RF loss—the p-type highly conductive parasitic channel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助zoe采纳,获得10
刚刚
球球完成签到,获得积分20
1秒前
鲤鱼不言完成签到,获得积分10
2秒前
Tuesday完成签到 ,获得积分10
3秒前
大模型应助普外科老白采纳,获得10
3秒前
4秒前
呜呼发布了新的文献求助10
4秒前
球球发布了新的文献求助10
4秒前
janejane发布了新的文献求助10
10秒前
想睡觉亦寻完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
脑洞疼应助。。采纳,获得10
15秒前
搜集达人应助小刘忙采纳,获得10
16秒前
小鲸鱼应助曰比的崛起采纳,获得10
16秒前
思源应助wang采纳,获得10
17秒前
17秒前
huibzh完成签到,获得积分10
18秒前
肖圣凯发布了新的文献求助10
18秒前
sugarmei发布了新的文献求助10
19秒前
janejane完成签到 ,获得积分20
20秒前
huibzh发布了新的文献求助10
20秒前
FashionBoy应助重要手机采纳,获得10
20秒前
23秒前
乐安发布了新的文献求助10
24秒前
福福完成签到 ,获得积分10
25秒前
cyj发布了新的文献求助10
27秒前
感动的三毒完成签到,获得积分10
27秒前
小刘忙发布了新的文献求助10
28秒前
heher完成签到 ,获得积分10
29秒前
30秒前
cuso4发布了新的文献求助10
31秒前
天天快乐应助mumu采纳,获得10
31秒前
32秒前
sugarmei完成签到,获得积分10
32秒前
积极的访云完成签到,获得积分10
33秒前
33秒前
沐颜完成签到 ,获得积分10
33秒前
重要手机发布了新的文献求助10
34秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471262
求助须知:如何正确求助?哪些是违规求助? 3064158
关于积分的说明 9087696
捐赠科研通 2754957
什么是DOI,文献DOI怎么找? 1511673
邀请新用户注册赠送积分活动 698560
科研通“疑难数据库(出版商)”最低求助积分说明 698423