电流(流体)
医学
工程伦理学
重症监护医学
工程类
电气工程
作者
Wengen Zhu,Siyu Guo,Junyi Sun,Yudan Zhao,Lei Zhu
标识
DOI:10.1016/j.metabol.2024.155957
摘要
Cardiovascular diseases (CVDs) are often linked to structural and functional impairments, such as heart defects and circulatory dysfunction, leading to compromised peripheral perfusion and heightened morbidity risks. Metabolic remodeling, particularly in the context of cardiac fibrosis and inflammation, is increasingly recognized as a pivotal factor in the pathogenesis of CVDs. Metabolic syndromes further predispose individuals to these conditions, underscoring the need to elucidate the metabolic underpinnings of CVDs. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that connects cellular metabolism with the regulation of cellular activity. The transport of lactate between different cells is essential for metabolic homeostasis and signal transduction. Disruptions to lactate dynamics are implicated in various CVDs. Furthermore, lactylation, a novel post-translational modification, has been identified in cardiac cells, where it influences protein function and gene expression, thereby playing a significant role in CVD pathogenesis. In this review, we summarized recent advancements in understanding the role of lactate and lactylation in CVDs, offering fresh insights that could guide future research directions and therapeutic interventions. The potential of lactate metabolism and lactylation as innovative therapeutic targets for CVD is a promising avenue for exploration.
科研通智能强力驱动
Strongly Powered by AbleSci AI