系统间交叉
光激发
单重态裂变
激子
三重态
材料科学
单重态
有机半导体
半导体
磷光
光化学
分子间力
化学物理
激发态
化学
光电子学
原子物理学
物理
凝聚态物理
分子
有机化学
量子力学
荧光
作者
Qinying Gu,Sebastian Gorgon,Alexander S. Romanov,Feng Li,Richard H. Friend,Emrys W. Evans
标识
DOI:10.1002/adma.202402790
摘要
Abstract Spin triplet exciton formation sets limits on technologies using organic semiconductors that are confined to singlet‐triplet photophysics. In contrast, excitations in the spin doublet manifold in organic radical semiconductors can show efficient luminescence. Here the dynamics of the spin allowed process of intermolecular energy transfer from triplet to doublet excitons are explored. A carbene‐metal‐amide (CMA‐CF 3 ) is employed as a model triplet donor host, since following photoexcitation it undergoes extremely fast intersystem crossing to generate a population of triplet excitons within 4 ps. This enables a foundational study for tracking energy transfer from triplets to a model radical semiconductor, TTM‐3PCz. Over 74% of all radical luminescence originates from the triplet channel in this system under photoexcitation. It is found that intermolecular triplet‐to‐doublet energy transfer can occur directly and rapidly, with 12% of triplet excitons transferring already on sub‐ns timescales. This enhanced triplet harvesting mechanism is utilized in efficient near‐infrared organic light‐emitting diodes, which can be extended to other opto‐electronic and ‐spintronic technologies by radical‐based spin control in molecular semiconductors.
科研通智能强力驱动
Strongly Powered by AbleSci AI