MPSU-Net: Quantitative Interpretation Algorithm for Road Cracks Based on Multiscale Feature Fusion and Superimposed U-Net

网(多面体) 口译(哲学) 特征(语言学) 融合 算法 计算机科学 弹性网正则化 模式识别(心理学) 人工智能 数学 几何学 特征选择 语言学 哲学 程序设计语言
作者
Ban Wang,J.N. Li,Changlu Dai,Weizhe Zhang,Maoying Zhou
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:: 104598-104598
标识
DOI:10.1016/j.dsp.2024.104598
摘要

Road cracks pose a persistent challenge in road maintenance, with timely detection and repair crucial for enhancing road safety. However, determining which cracks require repair can be difficult, necessitating a quantitative analysis approach. This paper proposes a deep learning-based method, Multiscale Feature Fusion and Superimposed U-Net (MPSU-Net), for precisely this purpose. The method employs MPSU segmentation, which quantifies crack interpretation by analyzing the black and white pixels in binary images. Within the segmentation algorithm, Attention Connection is introduced to fuse features across different layers, while the PSU Block amalgamates feature information within the same layer, incorporating ASPP, CBAM, and the superimposed U-Net. The superimposed U-Net is designed to enhance PSU's feature extraction capabilities. Furthermore, a new Conv block is introduced to bolster feature extraction by replacing all convolutions in the superimposed U-Net and decoder. To address imbalanced positive and negative crack samples, we adopt the Jaccard loss metric based on experimental results. We enhance dataset diversity by leveraging data augmentation and amalgamating data from multiple datasets, resulting in the comprehensive Crack500 and Crack datasets. Experimental findings showcase the significant efficacy of MPSU-Net in enhancing F1-score and Recall metrics. On the Crack500 dataset, MPSU-Net achieves F1-scores and Recall rates of 85.32% and 78.68%, respectively, representing notable improvements of 6.19% and 6.43% over the U-Net baseline performance. Similarly, on the Crack dataset, MPSU-Net attains F1-scores and Recall rates of 74.54% and 46.66%, marking enhancements of 8.25% and 8.64% over the U-Net baseline. These results underscore the high performance of MPSU-Net and its potential to aid in quantitative road crack analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孩子气完成签到,获得积分10
刚刚
科研通AI5应助云梦泽采纳,获得10
3秒前
幽默新梅完成签到,获得积分10
4秒前
科目三应助pterionGao采纳,获得10
5秒前
7秒前
qq158014169完成签到,获得积分10
10秒前
10秒前
君莫笑完成签到 ,获得积分10
11秒前
慕青应助昵称231采纳,获得10
12秒前
微7发布了新的文献求助10
12秒前
SGQT完成签到,获得积分10
13秒前
14秒前
福福发布了新的文献求助10
14秒前
14秒前
随意发布了新的文献求助20
15秒前
15秒前
17秒前
18秒前
18秒前
xzy998发布了新的文献求助10
19秒前
19秒前
酷波er应助墙头的草采纳,获得10
19秒前
msk发布了新的文献求助10
19秒前
爱科研的東完成签到,获得积分10
20秒前
梨凉完成签到,获得积分10
21秒前
pterionGao发布了新的文献求助10
21秒前
江洋大盗发布了新的文献求助10
21秒前
Zhang发布了新的文献求助10
22秒前
香蕉觅云应助yyfer采纳,获得10
23秒前
LXYang完成签到,获得积分10
24秒前
健康的怡完成签到,获得积分20
26秒前
cjn发布了新的文献求助10
26秒前
27秒前
liangye2222完成签到,获得积分10
28秒前
王不留行完成签到 ,获得积分10
28秒前
戴戴发布了新的文献求助10
29秒前
111发布了新的文献求助10
29秒前
Ann完成签到,获得积分10
30秒前
小七完成签到,获得积分10
31秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160