A knowledge-enhanced interpretable network for early recurrence prediction of hepatocellular carcinoma via multi-phase CT imaging

可解释性 机器学习 概化理论 领域知识 人工智能 计算机科学 深度学习 数据挖掘 模式识别(心理学) 统计 数学
作者
Yu Gao,Xue Yang,Hongjun Li,Da‐Wei Ding
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:189: 105509-105509 被引量:1
标识
DOI:10.1016/j.ijmedinf.2024.105509
摘要

Predicting early recurrence (ER) of hepatocellular carcinoma (HCC) accurately can guide treatment decisions and further enhance survival. Computed tomography (CT) imaging, analyzed by deep learning (DL) models combining domain knowledge, has been employed for the prediction. However, these DL models utilized late fusion, restricting the interaction between domain knowledge and images during feature extraction, thereby limiting the prediction performance and compromising decision-making interpretability. We propose a novel Vision Transformer (ViT)-based DL network, referred to as Dual-Style ViT (DSViT), to augment the interaction between domain knowledge and images and the effective fusion among multi-phase CT images for improving both predictive performance and interpretability. We apply the DSViT to develop pre-/post-operative models for predicting ER. Within DSViT, to balance the utilization between domain knowledge and images within DSViT, we propose an adaptive self-attention mechanism. Moreover, we present an attention-guided supervised learning module for balancing the contributions of multi-phase CT images to prediction and a domain knowledge self-supervision module for enhancing the fusion between domain knowledge and images, thereby further improving predictive performance. Finally, we provide the interpretability of the DSViT decision-making. Experiments on our multi-phase data demonstrate that DSViTs surpass the existing models across multiple performance metrics and provide the decision-making interpretability. Additional validation on a publicly available dataset underscores the generalizability of DSViT. The proposed DSViT can significantly improve the performance and interpretability of ER prediction, thereby fortifying the trustworthiness of artificial intelligence tool for HCC ER prediction in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Felixsun完成签到,获得积分10
刚刚
852应助宇宙边缘打怪兽采纳,获得10
2秒前
橘子完成签到 ,获得积分20
5秒前
深情安青应助科研白小白采纳,获得10
5秒前
Barbarian完成签到,获得积分10
8秒前
风起云飞完成签到,获得积分10
9秒前
完美世界应助Li F采纳,获得10
10秒前
10秒前
深情安青应助wxyaaa采纳,获得10
10秒前
小赵完成签到,获得积分10
12秒前
大佬应助nini采纳,获得10
13秒前
Paddi完成签到 ,获得积分10
13秒前
16秒前
科研通AI2S应助风起云飞采纳,获得10
16秒前
芝儿发布了新的文献求助10
16秒前
柔弱蜻蜓关注了科研通微信公众号
17秒前
17秒前
18秒前
18秒前
18秒前
hs完成签到,获得积分10
19秒前
19秒前
linllll完成签到,获得积分10
19秒前
彭凯发布了新的文献求助10
21秒前
百里健柏发布了新的文献求助10
22秒前
想喝奶茶发布了新的文献求助10
22秒前
东华发布了新的文献求助10
22秒前
24秒前
深情安青应助yy采纳,获得10
24秒前
123发布了新的文献求助10
24秒前
Helic完成签到,获得积分10
24秒前
嗦了蜜发布了新的文献求助10
25秒前
华仔应助月棺轻城采纳,获得10
25秒前
丘比特应助安寒采纳,获得10
26秒前
21完成签到,获得积分10
26秒前
Li F发布了新的文献求助10
28秒前
淡然水绿发布了新的文献求助10
28秒前
爱学习的丹丹完成签到,获得积分10
28秒前
呱牛应助yutonghuan采纳,获得10
29秒前
百里健柏完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461433
求助须知:如何正确求助?哪些是违规求助? 3055090
关于积分的说明 9046471
捐赠科研通 2745000
什么是DOI,文献DOI怎么找? 1505827
科研通“疑难数据库(出版商)”最低求助积分说明 695897
邀请新用户注册赠送积分活动 695293