Combining descriptive and predictive modeling to systematically design depth filtration‐based harvest processes for biologics

结垢 过滤(数学) 滤波器(信号处理) 计算机科学 工艺工程 生化工程 过程(计算) 工程类 数学 化学 统计 生物化学 计算机视觉 操作系统
作者
Peter Jianrui Liu,Michael Hartmann,Ajay Shankaran,Hong Li,John Welsh
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (9): 2924-2935
标识
DOI:10.1002/bit.28765
摘要

Advances in upstream production of biologics-particularly intensified fed-batch processes beyond 10% cell solids-have severely strained harvest operations, especially depth filtration. Bioreactors containing high amounts of cell debris (more than 40% particles <10 µm in diameter) are increasingly common and drive the need for more robust depth filtration processes, while accelerated timelines emphasize the need for predictive tools to accelerate development. Both needs are constrained by the current limited mechanistic understanding of the harvest filter-feedstream system. Historically, process development relied on screening scale-down depth filter devices and conditions to define throughput before fouling, indicated by increasing differential pressure and/or particle breakthrough (measured via turbidity). This approach is straightforward, but resource-intensive, and its results are inherently limited by the variability of the feedstream. Semi-empirical models have been developed from first principles to describe various mechanisms of filter fouling, that is, pore constriction, pore blocking, and/or surface deposit. Fitting these models to experimental data can assist in identifying the dominant fouling mechanism. Still, this approach sees limited application to guide process development, as it is descriptive, not predictive. To address this gap, we developed a hybrid modeling approach. Leveraging historical bench scale filtration process data, we built a partial least squares regression model to predict particle breakthrough from filter and feedstream attributes, and leveraged the model to demonstrate prediction of filter performance a priori. The fouling models are used to interpret and provide physical meaning to these computational models. This hybrid approach-combining the mechanistic insights of fouling models and the predictive capability of computational models-was used to establish a robust platform strategy for depth filtration of Chinese hamster ovary cell cultures. As new data continues to teach the computational models, in silico tools will become an essential part of harvest process development by enabling prospective experimental design, reducing total experimental load, and accelerating development under strict timelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
XIAOMUMU发布了新的文献求助10
3秒前
NexusExplorer应助huanhuan采纳,获得10
3秒前
3秒前
动听以晴发布了新的文献求助10
3秒前
4秒前
李爱国应助狂暴的蜗牛0713采纳,获得10
4秒前
5秒前
5秒前
linlinlinlin发布了新的文献求助10
7秒前
oyxz完成签到,获得积分10
8秒前
韩十四完成签到,获得积分10
8秒前
8秒前
Shirley完成签到,获得积分10
9秒前
9秒前
开花的五花肉完成签到,获得积分10
10秒前
斯文败类应助哲999采纳,获得10
11秒前
阿林琳琳发布了新的文献求助10
11秒前
Rez发布了新的文献求助10
11秒前
爆米花应助巫凝天采纳,获得30
13秒前
aj完成签到,获得积分10
14秒前
CodeCraft应助oo采纳,获得10
14秒前
sssnesstudy发布了新的文献求助10
15秒前
精灵大夫完成签到,获得积分10
16秒前
无聊的耳机完成签到,获得积分10
17秒前
贪玩菲鹰完成签到,获得积分10
18秒前
美好乐松应助wen采纳,获得10
18秒前
18秒前
杰克李李完成签到,获得积分10
19秒前
19秒前
Rez完成签到,获得积分10
19秒前
20秒前
20秒前
hokuto完成签到,获得积分10
21秒前
一台小钢炮完成签到,获得积分10
21秒前
小老板完成签到,获得积分10
22秒前
22秒前
天天看文献完成签到,获得积分10
22秒前
哈哈哈哈啊哈完成签到,获得积分10
22秒前
种桃老总完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905