Combining descriptive and predictive modeling to systematically design depth filtration‐based harvest processes for biologics

结垢 过滤(数学) 滤波器(信号处理) 计算机科学 工艺工程 生化工程 过程(计算) 工程类 数学 化学 统计 生物化学 计算机视觉 操作系统
作者
Peter Jianrui Liu,Michael Hartmann,Ajay Shankaran,Hong Li,John P. Welsh
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:121 (9): 2924-2935 被引量:4
标识
DOI:10.1002/bit.28765
摘要

Advances in upstream production of biologics-particularly intensified fed-batch processes beyond 10% cell solids-have severely strained harvest operations, especially depth filtration. Bioreactors containing high amounts of cell debris (more than 40% particles <10 µm in diameter) are increasingly common and drive the need for more robust depth filtration processes, while accelerated timelines emphasize the need for predictive tools to accelerate development. Both needs are constrained by the current limited mechanistic understanding of the harvest filter-feedstream system. Historically, process development relied on screening scale-down depth filter devices and conditions to define throughput before fouling, indicated by increasing differential pressure and/or particle breakthrough (measured via turbidity). This approach is straightforward, but resource-intensive, and its results are inherently limited by the variability of the feedstream. Semi-empirical models have been developed from first principles to describe various mechanisms of filter fouling, that is, pore constriction, pore blocking, and/or surface deposit. Fitting these models to experimental data can assist in identifying the dominant fouling mechanism. Still, this approach sees limited application to guide process development, as it is descriptive, not predictive. To address this gap, we developed a hybrid modeling approach. Leveraging historical bench scale filtration process data, we built a partial least squares regression model to predict particle breakthrough from filter and feedstream attributes, and leveraged the model to demonstrate prediction of filter performance a priori. The fouling models are used to interpret and provide physical meaning to these computational models. This hybrid approach-combining the mechanistic insights of fouling models and the predictive capability of computational models-was used to establish a robust platform strategy for depth filtration of Chinese hamster ovary cell cultures. As new data continues to teach the computational models, in silico tools will become an essential part of harvest process development by enabling prospective experimental design, reducing total experimental load, and accelerating development under strict timelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿应助张宁波采纳,获得10
1秒前
辣辣完成签到,获得积分10
1秒前
草学研究完成签到,获得积分10
1秒前
1秒前
2秒前
笨笨芝麻完成签到,获得积分10
2秒前
小伍完成签到,获得积分10
3秒前
3秒前
3秒前
炸炸桃完成签到,获得积分10
3秒前
gao完成签到,获得积分10
4秒前
lxb完成签到,获得积分10
4秒前
4秒前
4秒前
夹谷蕈完成签到 ,获得积分10
4秒前
俭朴的老黑完成签到,获得积分10
5秒前
5秒前
禾沐发布了新的文献求助10
5秒前
科研小锄头完成签到,获得积分10
6秒前
思源应助poppy采纳,获得10
6秒前
有点小卑鄙完成签到,获得积分10
6秒前
研友_VZG7GZ应助LTB采纳,获得10
6秒前
3242晶发布了新的文献求助10
7秒前
shelly完成签到,获得积分10
7秒前
金金金完成签到,获得积分10
8秒前
8秒前
8秒前
五五我发布了新的文献求助10
9秒前
小桑桑完成签到,获得积分10
9秒前
10秒前
LIUDAN发布了新的文献求助10
10秒前
10秒前
10秒前
Teirow完成签到,获得积分10
10秒前
10秒前
自由的山柏完成签到,获得积分10
10秒前
二橦完成签到 ,获得积分10
10秒前
天马行空完成签到,获得积分10
11秒前
豆子发布了新的文献求助10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885