可解释性
计算机科学
钥匙(锁)
语义学(计算机科学)
水准点(测量)
人工智能
弹丸
图像(数学)
代表(政治)
模式识别(心理学)
上下文图像分类
可视化
一次性
编码(集合论)
面子(社会学概念)
机器学习
化学
计算机安全
有机化学
机械工程
社会科学
大地测量学
工程类
集合(抽象数据类型)
社会学
政治
政治学
法学
程序设计语言
地理
作者
Zhe Sun,Zhengtao Wang,Peilian Guo
标识
DOI:10.1016/j.neunet.2024.106456
摘要
Few-shot image classification involves recognizing new classes with a limited number of labeled samples. Current local descriptor-based methods, while leveraging consistent low-level features across visible and invisible classes, face challenges including redundant adjacent information, irrelevant partial representation, and limited interpretability. This paper proposes KLSANet, a few-shot image classification approach based on key local semantic alignment network, which aligns key local semantics for accurate classification. Furthermore, we introduce a key local screening module to mitigate the influence of semantically irrelevant image parts on classification. KLSANet demonstrates superior performance on three benchmark datasets (CUB, Stanford Dogs, Stanford Cars), outperforming state-of-the-art methods in 1-shot and 5-shot settings with average improvements of 3.95% and 2.56% respectively. Visualization experiments demonstrate the interpretability of KLSANet predictions. Code is available at: https://github.com/ZitZhengWang/KLSANet.
科研通智能强力驱动
Strongly Powered by AbleSci AI