Fredformer: Frequency Debiased Transformer for Time Series Forecasting

计算机科学 变压器 时间序列 系列(地层学) 电气工程 电压 工程类 机器学习 地质学 古生物学
作者
Xihao Piao,Zheng Chen,Taichi Murayama,Yasuko Matsubara,Yasushi Sakurai
标识
DOI:10.1145/3637528.3671928
摘要

The Transformer model has shown leading performance in time series forecasting. Nevertheless, in some complex scenarios, it tends to learn low-frequency features in the data and overlook high-frequency features, showing a frequency bias. This bias prevents the model from accurately capturing important high-frequency data features. In this paper, we undertake empirical analyses to understand this bias and discover that frequency bias results from the model disproportionately focusing on frequency features with higher energy. Based on our analysis, we formulate this bias and propose Fredformer, a Transformer-based framework designed to mitigate frequency bias by learning features equally across different frequency bands. This approach prevents the model from overlooking lower amplitude features important for accurate forecasting. Extensive experiments show the effectiveness of our proposed approach, which can outperform other baselines in different real-world time-series datasets. Furthermore, we introduce a lightweight variant of the Fredformer with an attention matrix approximation, which achieves comparable performance but with much fewer parameters and lower computation costs. The code is available at: https://github.com/chenzRG/Fredformer

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
裘山彤发布了新的文献求助10
2秒前
记得吃早饭完成签到 ,获得积分10
3秒前
kiki发布了新的文献求助30
4秒前
金宁发布了新的文献求助10
4秒前
嘻嘻完成签到,获得积分20
7秒前
苏紫梗桔完成签到,获得积分10
8秒前
ll发布了新的文献求助10
10秒前
关我屁事完成签到 ,获得积分10
12秒前
金宁完成签到,获得积分10
14秒前
miaomliu完成签到,获得积分10
17秒前
乐乐应助裘山彤采纳,获得10
21秒前
喻槿发布了新的文献求助10
22秒前
33秒前
33秒前
喻槿完成签到,获得积分10
38秒前
qiao发布了新的文献求助10
38秒前
英俊的铭应助喻槿采纳,获得10
43秒前
隐形曼青应助lcr采纳,获得10
44秒前
45秒前
47秒前
47秒前
47秒前
48秒前
48秒前
48秒前
48秒前
48秒前
48秒前
48秒前
在水一方应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
49秒前
kiki完成签到,获得积分10
50秒前
魏头头发布了新的文献求助10
51秒前
辣目童子完成签到 ,获得积分10
54秒前
55秒前
Lucycomplex完成签到,获得积分10
57秒前
程昱发布了新的文献求助10
1分钟前
韦雪莲完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506