亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel fractional multivariate grey prediction model for forecasting hydroelectricity consumption

多元统计 计量经济学 水力发电 多元分析 统计 数学 计算机科学 工程类 电气工程
作者
Ye Li,Hongtao Ren,Junjuan Liu
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:14 (3): 507-526
标识
DOI:10.1108/gs-09-2023-0095
摘要

Purpose This study aims to enhance the prediction accuracy of hydroelectricity consumption in China, with a focus on addressing the challenges posed by complex and nonlinear characteristics of the data. A novel grey multivariate prediction model with structural optimization is proposed to overcome the limitations of existing grey forecasting methods. Design/methodology/approach This paper innovatively introduces fractional order and nonlinear parameter terms to develop a novel fractional multivariate grey prediction model based on the NSGM(1, N) model. The Particle Swarm Optimization algorithm is then utilized to compute the model’s hyperparameters. Subsequently, the proposed model is applied to forecast China’s hydroelectricity consumption and is compared with other models for analysis. Findings Theoretical derivation results demonstrate that the new model has good compatibility. Empirical results indicate that the FMGM(1, N, a) model outperforms other models in predicting the hydroelectricity consumption of China. This demonstrates the model’s effectiveness in handling complex and nonlinear data, emphasizing its practical applicability. Practical implications This paper introduces a scientific and efficient method for forecasting hydroelectricity consumption in China, particularly when confronted with complexity and nonlinearity. The predicted results can provide a solid support for China’s hydroelectricity resource development scheduling and planning. Originality/value The primary contribution of this paper is to propose a novel fractional multivariate grey prediction model that can handle nonlinear and complex series more effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mika关注了科研通微信公众号
刚刚
5秒前
9秒前
郭倩发布了新的文献求助10
15秒前
17秒前
上官若男应助郭倩采纳,获得10
20秒前
mika发布了新的文献求助10
21秒前
23秒前
橘子关注了科研通微信公众号
23秒前
24秒前
本本完成签到 ,获得积分10
30秒前
嘎嘎好发布了新的文献求助10
31秒前
打打应助坚强的初夏采纳,获得10
36秒前
38秒前
扣子完成签到 ,获得积分10
39秒前
44秒前
XIA完成签到 ,获得积分10
48秒前
56秒前
58秒前
1分钟前
1分钟前
坚强的严青完成签到,获得积分20
1分钟前
www完成签到 ,获得积分10
1分钟前
毛豆应助清修采纳,获得10
1分钟前
1分钟前
粽子完成签到,获得积分10
1分钟前
Ava应助坚强的严青采纳,获得10
1分钟前
1分钟前
zhangqin发布了新的文献求助10
1分钟前
脑洞疼应助嘎嘎好采纳,获得10
1分钟前
FashionBoy应助某人金采纳,获得10
1分钟前
1分钟前
sy完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
丘比特应助童心未泯采纳,获得10
1分钟前
儒雅的火龙果完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387