LEO satellites selection-based computation offloading algorithm in aircraft-satellite multi-access edge computing networks

计算机科学 计算 计算卸载 GSM演进的增强数据速率 选择(遗传算法) 卫星 选择算法 边缘计算 分布式计算 算法 计算机网络 电信 人工智能 航空航天工程 工程类
作者
Jiadong Zhang,Rui‐Dong Zhang,Wenku Shi
出处
期刊:Computer Communications [Elsevier]
标识
DOI:10.1016/j.comcom.2024.05.011
摘要

The emergence of sixth-generation (6G) mobile networks and non-terrestrial networks (NTNs) has led to increased interest in low Earth orbit (LEO) satellite-based communication networks for their potential to provide global coverage and ubiquitous connectivity. In this paper, we investigate the LEO satellites selection-based computation offloading problem in the aircraft-satellite multi-access edge computing (ASMEC) network, where LEO satellites and edge computing processors are integrated to provide ubiquitous and low-latency communication and computation services for aircraft during flights. In contrast to most existing works, which directly assume a fixed number of satellites or orbits in satellite-based MEC networks, we investigate the problem of how many satellites and which satellites to select in the ASMEC network. Our objective is to minimize the average total time delay of tasks during aircraft-satellite computation offloading. To achieve this, we formulate a nonlinear integer programming (NLIP) problem and propose the LEO satellites selection-based computation offloading (LSSBCO) algorithm to solve it, which includes the shortest aircraft-satellite distance based access satellite selection (ASS-SD) algorithm and the nearest k(t) neighboring satellites selection (NSS-k(t)) algorithm. We evaluate the performance of the LSSBCO algorithm in terms of the average total time delay, the maximum throughput, the average aircraft-satellite distance, the average connection duration, and the number of satellite handovers. Numerical results show that the proposed algorithm outperforms the benchmark algorithms with a lower average total time delay.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青阳发布了新的文献求助10
刚刚
SciGPT应助热爱生活采纳,获得10
刚刚
茸茸茸完成签到,获得积分10
刚刚
帆帆帆发布了新的文献求助10
1秒前
Hello应助Rex采纳,获得10
1秒前
1秒前
干净初雪发布了新的文献求助10
1秒前
goodbuhui发布了新的文献求助10
2秒前
嘿嘿应助小小威采纳,获得10
2秒前
饼饼完成签到,获得积分10
2秒前
DX完成签到,获得积分10
2秒前
2秒前
FashionBoy应助辛束采纳,获得10
3秒前
3秒前
土豆炖牛腩完成签到,获得积分20
3秒前
九歌发布了新的文献求助10
4秒前
4秒前
ss发布了新的文献求助10
4秒前
YDX发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
FashionBoy应助夏夏采纳,获得10
4秒前
卯一发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
科研通AI6应助侯康采纳,获得10
6秒前
CC完成签到 ,获得积分10
7秒前
在下小李发布了新的文献求助10
7秒前
科研通AI6应助奔奔采纳,获得10
7秒前
00关注了科研通微信公众号
7秒前
Georges-09发布了新的文献求助10
8秒前
8秒前
情怀应助萧一采纳,获得10
8秒前
汉堡包应助My采纳,获得30
8秒前
Hello应助lf采纳,获得10
9秒前
9秒前
没有昵称发布了新的文献求助10
9秒前
海棠花完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827