LEO satellites selection-based computation offloading algorithm in aircraft-satellite multi-access edge computing networks

计算机科学 计算 计算卸载 GSM演进的增强数据速率 选择(遗传算法) 卫星 选择算法 边缘计算 分布式计算 算法 计算机网络 电信 人工智能 航空航天工程 工程类
作者
Jiadong Zhang,Rui‐Dong Zhang,Wenku Shi
出处
期刊:Computer Communications [Elsevier]
标识
DOI:10.1016/j.comcom.2024.05.011
摘要

The emergence of sixth-generation (6G) mobile networks and non-terrestrial networks (NTNs) has led to increased interest in low Earth orbit (LEO) satellite-based communication networks for their potential to provide global coverage and ubiquitous connectivity. In this paper, we investigate the LEO satellites selection-based computation offloading problem in the aircraft-satellite multi-access edge computing (ASMEC) network, where LEO satellites and edge computing processors are integrated to provide ubiquitous and low-latency communication and computation services for aircraft during flights. In contrast to most existing works, which directly assume a fixed number of satellites or orbits in satellite-based MEC networks, we investigate the problem of how many satellites and which satellites to select in the ASMEC network. Our objective is to minimize the average total time delay of tasks during aircraft-satellite computation offloading. To achieve this, we formulate a nonlinear integer programming (NLIP) problem and propose the LEO satellites selection-based computation offloading (LSSBCO) algorithm to solve it, which includes the shortest aircraft-satellite distance based access satellite selection (ASS-SD) algorithm and the nearest k(t) neighboring satellites selection (NSS-k(t)) algorithm. We evaluate the performance of the LSSBCO algorithm in terms of the average total time delay, the maximum throughput, the average aircraft-satellite distance, the average connection duration, and the number of satellite handovers. Numerical results show that the proposed algorithm outperforms the benchmark algorithms with a lower average total time delay.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
松大宝发布了新的文献求助10
刚刚
HXuer完成签到,获得积分10
刚刚
乐一李完成签到,获得积分10
1秒前
2秒前
3秒前
鸿宇发布了新的文献求助100
3秒前
3秒前
111完成签到,获得积分20
4秒前
5秒前
星星发布了新的文献求助10
5秒前
Hello应助三块石头采纳,获得10
5秒前
5秒前
同学甲发布了新的文献求助10
6秒前
6秒前
情怀应助冰红茶采纳,获得10
6秒前
wwc应助十言采纳,获得10
6秒前
wanci应助任性土豆采纳,获得10
6秒前
陈法国发布了新的文献求助10
7秒前
7秒前
哈哈哈哈啊哈完成签到,获得积分10
8秒前
li发布了新的文献求助30
8秒前
逃离实验室完成签到,获得积分10
8秒前
叶远望发布了新的文献求助10
9秒前
ding应助YU DIAN采纳,获得10
9秒前
CipherSage应助jinzhen采纳,获得10
10秒前
蓝桉发布了新的文献求助20
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
黄棉完成签到,获得积分10
12秒前
昔我往矣完成签到 ,获得积分10
12秒前
13秒前
酷波er应助鸿宇采纳,获得10
13秒前
zhangting发布了新的文献求助10
14秒前
njzqs发布了新的文献求助10
14秒前
15秒前
坦率的棉花糖完成签到,获得积分10
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313182
求助须知:如何正确求助?哪些是违规求助? 2945559
关于积分的说明 8525969
捐赠科研通 2621352
什么是DOI,文献DOI怎么找? 1433465
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512