Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence

射线照相术 医学 口腔正畸科 头影测量 阶段(地层学) 颈椎 牙科 解剖 放射科 生物 古生物学
作者
Sajjad Alipour Shoari,Seyed Vahid Sadrolashrafi,Aydin Sohrabi,Reza Afrouzian,Pooya Ebrahimi,Maryam Kouhsoltani,Minou Kouh Soltani
出处
期刊:Progress in Orthodontics [Elsevier]
卷期号:25 (1)
标识
DOI:10.1186/s40510-024-00527-1
摘要

Abstract Introduction Determining the right time for orthodontic treatment is one of the most important factors affecting the treatment plan and its outcome. The aim of this study is to estimate the mandibular growth stage based on cervical vertebral maturation (CVM) in lateral cephalometric radiographs using artificial intelligence. Unlike previous studies, which use conventional CVM stage naming, our proposed method directly correlates cervical vertebrae with mandibular growth slope. Methods and materials To conduct this study, first, information of people achieved in American Association of Orthodontics Foundation (AAOF) growth centers was assessed and after considering the entry and exit criteria, a total of 200 people, 108 women and 92 men, were included in the study. Then, the length of the mandible in the lateral cephalometric radiographs that were taken serially from the patients was calculated. The corresponding graphs were labeled based on the growth rate of the mandible in 3 stages; before the growth peak of puberty (pre-pubertal), during the growth peak of puberty (pubertal) and after the growth peak of puberty (post-pubertal). A total of 663 images were selected for evaluation using artificial intelligence. These images were evaluated with different deep learning-based artificial intelligence models considering the diagnostic measures of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). We also employed weighted kappa statistics. Results In the diagnosis of pre-pubertal stage, the convolutional neural network (CNN) designed for this study has the higher sensitivity and NPV (0.84, 0.91 respectively) compared to ResNet-18 model. The ResNet-18 model had better performance in other diagnostic measures of the pre-pubertal stage and all measures in the pubertal and post-pubertal stages. The highest overall diagnostic accuracy was also obtained using ResNet-18 model with the amount of 87.5% compared to 81% in designed CNN. Conclusion The artificial intelligence model trained in this study can receive images of cervical vertebrae and predict mandibular growth status by classifying it into one of three groups; before the growth spurt (pre-pubertal), during the growth spurt (pubertal), and after the growth spurt (post-pubertal). The highest accuracy is in post-pubertal stage with the designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcmlida完成签到,获得积分10
刚刚
刚刚
zyc1111111发布了新的文献求助60
1秒前
晚风做酒完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
坚强的翠霜完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
呆瓜发布了新的文献求助10
3秒前
万能图书馆应助小明采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
两仪完成签到,获得积分10
4秒前
ysta发布了新的文献求助10
4秒前
5秒前
huqing完成签到,获得积分10
5秒前
满满啊完成签到,获得积分10
6秒前
Yikai-Zhou发布了新的文献求助10
6秒前
两仪发布了新的文献求助10
6秒前
ZHAO发布了新的文献求助10
6秒前
未完发布了新的文献求助10
7秒前
勤奋大地发布了新的文献求助10
8秒前
zy发布了新的文献求助10
8秒前
8秒前
fated发布了新的文献求助10
8秒前
yixiaolou发布了新的文献求助10
9秒前
张三顺发布了新的文献求助10
9秒前
huqing发布了新的文献求助10
9秒前
9秒前
纯情的谷云完成签到 ,获得积分10
11秒前
zty完成签到,获得积分20
11秒前
smile发布了新的文献求助10
11秒前
ysta完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570