Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence

射线照相术 医学 口腔正畸科 头影测量 阶段(地层学) 颈椎 牙科 解剖 放射科 生物 古生物学
作者
Sajjad Alipour Shoari,Seyed Vahid Sadrolashrafi,Aydin Sohrabi,Reza Afrouzian,Pooya Ebrahimi,Maryam Kouhsoltani,Minou Kouh Soltani
出处
期刊:Progress in Orthodontics [Elsevier]
卷期号:25 (1)
标识
DOI:10.1186/s40510-024-00527-1
摘要

Abstract Introduction Determining the right time for orthodontic treatment is one of the most important factors affecting the treatment plan and its outcome. The aim of this study is to estimate the mandibular growth stage based on cervical vertebral maturation (CVM) in lateral cephalometric radiographs using artificial intelligence. Unlike previous studies, which use conventional CVM stage naming, our proposed method directly correlates cervical vertebrae with mandibular growth slope. Methods and materials To conduct this study, first, information of people achieved in American Association of Orthodontics Foundation (AAOF) growth centers was assessed and after considering the entry and exit criteria, a total of 200 people, 108 women and 92 men, were included in the study. Then, the length of the mandible in the lateral cephalometric radiographs that were taken serially from the patients was calculated. The corresponding graphs were labeled based on the growth rate of the mandible in 3 stages; before the growth peak of puberty (pre-pubertal), during the growth peak of puberty (pubertal) and after the growth peak of puberty (post-pubertal). A total of 663 images were selected for evaluation using artificial intelligence. These images were evaluated with different deep learning-based artificial intelligence models considering the diagnostic measures of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). We also employed weighted kappa statistics. Results In the diagnosis of pre-pubertal stage, the convolutional neural network (CNN) designed for this study has the higher sensitivity and NPV (0.84, 0.91 respectively) compared to ResNet-18 model. The ResNet-18 model had better performance in other diagnostic measures of the pre-pubertal stage and all measures in the pubertal and post-pubertal stages. The highest overall diagnostic accuracy was also obtained using ResNet-18 model with the amount of 87.5% compared to 81% in designed CNN. Conclusion The artificial intelligence model trained in this study can receive images of cervical vertebrae and predict mandibular growth status by classifying it into one of three groups; before the growth spurt (pre-pubertal), during the growth spurt (pubertal), and after the growth spurt (post-pubertal). The highest accuracy is in post-pubertal stage with the designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzq发布了新的文献求助10
1秒前
cong完成签到,获得积分10
1秒前
阿皓要发nature完成签到,获得积分10
1秒前
youjun发布了新的文献求助10
2秒前
2秒前
小曲发布了新的文献求助10
2秒前
belssingoo发布了新的文献求助10
2秒前
daidai发布了新的文献求助10
3秒前
赘婿应助甜甜采纳,获得10
3秒前
行者无疆发布了新的文献求助10
3秒前
假发君完成签到,获得积分10
3秒前
HIKUN发布了新的文献求助10
4秒前
5秒前
6秒前
科研通AI5应助科研Five采纳,获得10
6秒前
6秒前
小二郎应助qq采纳,获得10
6秒前
阿昔完成签到,获得积分10
7秒前
Wrong完成签到,获得积分10
7秒前
缥缈小夏完成签到 ,获得积分10
7秒前
7秒前
科研通AI6应助到灯塔去采纳,获得10
8秒前
科目三应助缓慢语雪采纳,获得30
8秒前
上官若男应助pm采纳,获得30
8秒前
9秒前
小蘑菇应助Nancy采纳,获得10
9秒前
10秒前
kk完成签到 ,获得积分10
10秒前
易烊千玺老婆完成签到,获得积分10
10秒前
10秒前
迅速的小鸽子完成签到 ,获得积分10
10秒前
10秒前
kingwill应助化学采纳,获得20
10秒前
lll发布了新的文献求助10
11秒前
贺贺完成签到,获得积分10
12秒前
12秒前
12秒前
丁浩伦发布了新的文献求助30
12秒前
liuxl完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170