Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence

射线照相术 医学 口腔正畸科 头影测量 阶段(地层学) 颈椎 牙科 解剖 放射科 生物 古生物学
作者
Sajjad Alipour Shoari,Seyed Vahid Sadrolashrafi,Aydin Sohrabi,Reza Afrouzian,Pooya Ebrahimi,Maryam Kouhsoltani,Minou Kouh Soltani
出处
期刊:Progress in Orthodontics [Elsevier]
卷期号:25 (1)
标识
DOI:10.1186/s40510-024-00527-1
摘要

Abstract Introduction Determining the right time for orthodontic treatment is one of the most important factors affecting the treatment plan and its outcome. The aim of this study is to estimate the mandibular growth stage based on cervical vertebral maturation (CVM) in lateral cephalometric radiographs using artificial intelligence. Unlike previous studies, which use conventional CVM stage naming, our proposed method directly correlates cervical vertebrae with mandibular growth slope. Methods and materials To conduct this study, first, information of people achieved in American Association of Orthodontics Foundation (AAOF) growth centers was assessed and after considering the entry and exit criteria, a total of 200 people, 108 women and 92 men, were included in the study. Then, the length of the mandible in the lateral cephalometric radiographs that were taken serially from the patients was calculated. The corresponding graphs were labeled based on the growth rate of the mandible in 3 stages; before the growth peak of puberty (pre-pubertal), during the growth peak of puberty (pubertal) and after the growth peak of puberty (post-pubertal). A total of 663 images were selected for evaluation using artificial intelligence. These images were evaluated with different deep learning-based artificial intelligence models considering the diagnostic measures of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). We also employed weighted kappa statistics. Results In the diagnosis of pre-pubertal stage, the convolutional neural network (CNN) designed for this study has the higher sensitivity and NPV (0.84, 0.91 respectively) compared to ResNet-18 model. The ResNet-18 model had better performance in other diagnostic measures of the pre-pubertal stage and all measures in the pubertal and post-pubertal stages. The highest overall diagnostic accuracy was also obtained using ResNet-18 model with the amount of 87.5% compared to 81% in designed CNN. Conclusion The artificial intelligence model trained in this study can receive images of cervical vertebrae and predict mandibular growth status by classifying it into one of three groups; before the growth spurt (pre-pubertal), during the growth spurt (pubertal), and after the growth spurt (post-pubertal). The highest accuracy is in post-pubertal stage with the designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chuyinweilai完成签到,获得积分10
2秒前
3秒前
星辰大海应助wwe采纳,获得10
4秒前
4秒前
4秒前
归尘完成签到,获得积分10
5秒前
乐乐应助djbj2022采纳,获得10
6秒前
7秒前
8秒前
DreamerKing发布了新的文献求助10
9秒前
maybe发布了新的文献求助10
10秒前
11秒前
吴彦祖发布了新的文献求助10
12秒前
12秒前
笑面客发布了新的文献求助10
12秒前
13秒前
花楸树完成签到,获得积分10
15秒前
御风使者完成签到 ,获得积分10
15秒前
ele_yuki完成签到,获得积分10
16秒前
隐形曼青应助您多笑笑采纳,获得10
17秒前
DreamerKing完成签到,获得积分10
18秒前
科研通AI5应助虚心的问丝采纳,获得10
19秒前
20秒前
MY完成签到 ,获得积分10
21秒前
xfy完成签到 ,获得积分10
21秒前
御风使者关注了科研通微信公众号
22秒前
23秒前
亮liang完成签到,获得积分10
25秒前
wwe发布了新的文献求助10
27秒前
赵世鹏完成签到,获得积分10
29秒前
30秒前
33秒前
珹澈完成签到 ,获得积分10
35秒前
呵呵哒完成签到,获得积分10
36秒前
37秒前
啊TiP完成签到,获得积分10
43秒前
zhul09完成签到,获得积分10
43秒前
研友_VZG7GZ应助rlix采纳,获得10
48秒前
Hello应助花楸树采纳,获得10
48秒前
清漪完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3764421
求助须知:如何正确求助?哪些是违规求助? 3309272
关于积分的说明 10148161
捐赠科研通 3024228
什么是DOI,文献DOI怎么找? 1659988
邀请新用户注册赠送积分活动 793032
科研通“疑难数据库(出版商)”最低求助积分说明 755353