Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence

射线照相术 医学 口腔正畸科 头影测量 阶段(地层学) 颈椎 牙科 解剖 放射科 生物 古生物学
作者
Sajjad Alipour Shoari,Seyed Vahid Sadrolashrafi,Aydin Sohrabi,Reza Afrouzian,Pooya Ebrahimi,Maryam Kouhsoltani,Minou Kouh Soltani
出处
期刊:Progress in Orthodontics [Elsevier]
卷期号:25 (1)
标识
DOI:10.1186/s40510-024-00527-1
摘要

Abstract Introduction Determining the right time for orthodontic treatment is one of the most important factors affecting the treatment plan and its outcome. The aim of this study is to estimate the mandibular growth stage based on cervical vertebral maturation (CVM) in lateral cephalometric radiographs using artificial intelligence. Unlike previous studies, which use conventional CVM stage naming, our proposed method directly correlates cervical vertebrae with mandibular growth slope. Methods and materials To conduct this study, first, information of people achieved in American Association of Orthodontics Foundation (AAOF) growth centers was assessed and after considering the entry and exit criteria, a total of 200 people, 108 women and 92 men, were included in the study. Then, the length of the mandible in the lateral cephalometric radiographs that were taken serially from the patients was calculated. The corresponding graphs were labeled based on the growth rate of the mandible in 3 stages; before the growth peak of puberty (pre-pubertal), during the growth peak of puberty (pubertal) and after the growth peak of puberty (post-pubertal). A total of 663 images were selected for evaluation using artificial intelligence. These images were evaluated with different deep learning-based artificial intelligence models considering the diagnostic measures of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). We also employed weighted kappa statistics. Results In the diagnosis of pre-pubertal stage, the convolutional neural network (CNN) designed for this study has the higher sensitivity and NPV (0.84, 0.91 respectively) compared to ResNet-18 model. The ResNet-18 model had better performance in other diagnostic measures of the pre-pubertal stage and all measures in the pubertal and post-pubertal stages. The highest overall diagnostic accuracy was also obtained using ResNet-18 model with the amount of 87.5% compared to 81% in designed CNN. Conclusion The artificial intelligence model trained in this study can receive images of cervical vertebrae and predict mandibular growth status by classifying it into one of three groups; before the growth spurt (pre-pubertal), during the growth spurt (pubertal), and after the growth spurt (post-pubertal). The highest accuracy is in post-pubertal stage with the designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jiaaa完成签到 ,获得积分10
1秒前
1秒前
huaxue发布了新的文献求助10
2秒前
3秒前
3秒前
嘿嘿完成签到,获得积分10
3秒前
明理飞风完成签到,获得积分10
4秒前
健康的肺完成签到,获得积分10
5秒前
孙孙孙啊完成签到,获得积分10
5秒前
不安姿完成签到 ,获得积分10
6秒前
7秒前
传奇3应助虚幻盼晴采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Akim应助liudw采纳,获得10
8秒前
9秒前
Alone离殇完成签到 ,获得积分10
9秒前
光亮白猫关注了科研通微信公众号
9秒前
露西亚完成签到,获得积分10
9秒前
myg123完成签到 ,获得积分10
10秒前
11秒前
xioayu完成签到,获得积分10
11秒前
11秒前
小白先生完成签到,获得积分0
13秒前
13秒前
MaYue完成签到,获得积分10
13秒前
屿若发布了新的文献求助50
13秒前
现代rong完成签到,获得积分10
14秒前
汉堡包应助半夏采纳,获得10
14秒前
whikerlw完成签到,获得积分20
15秒前
15秒前
YZChen完成签到,获得积分10
16秒前
陆肆柒发布了新的文献求助10
16秒前
whoKnows应助露西亚采纳,获得20
17秒前
17秒前
不二子完成签到 ,获得积分20
17秒前
FashionBoy应助千瓦时醒醒采纳,获得10
18秒前
19秒前
司徒诗蕾发布了新的文献求助10
19秒前
NexusExplorer应助光亮的思柔采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125