Estimating mandibular growth stage based on cervical vertebral maturation in lateral cephalometric radiographs using artificial intelligence

射线照相术 医学 口腔正畸科 头影测量 阶段(地层学) 颈椎 牙科 解剖 放射科 生物 古生物学
作者
Sajjad Alipour Shoari,Seyed Vahid Sadrolashrafi,Aydin Sohrabi,Reza Afrouzian,Pooya Ebrahimi,Maryam Kouhsoltani,Minou Kouh Soltani
出处
期刊:Progress in Orthodontics [Elsevier]
卷期号:25 (1)
标识
DOI:10.1186/s40510-024-00527-1
摘要

Abstract Introduction Determining the right time for orthodontic treatment is one of the most important factors affecting the treatment plan and its outcome. The aim of this study is to estimate the mandibular growth stage based on cervical vertebral maturation (CVM) in lateral cephalometric radiographs using artificial intelligence. Unlike previous studies, which use conventional CVM stage naming, our proposed method directly correlates cervical vertebrae with mandibular growth slope. Methods and materials To conduct this study, first, information of people achieved in American Association of Orthodontics Foundation (AAOF) growth centers was assessed and after considering the entry and exit criteria, a total of 200 people, 108 women and 92 men, were included in the study. Then, the length of the mandible in the lateral cephalometric radiographs that were taken serially from the patients was calculated. The corresponding graphs were labeled based on the growth rate of the mandible in 3 stages; before the growth peak of puberty (pre-pubertal), during the growth peak of puberty (pubertal) and after the growth peak of puberty (post-pubertal). A total of 663 images were selected for evaluation using artificial intelligence. These images were evaluated with different deep learning-based artificial intelligence models considering the diagnostic measures of sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV). We also employed weighted kappa statistics. Results In the diagnosis of pre-pubertal stage, the convolutional neural network (CNN) designed for this study has the higher sensitivity and NPV (0.84, 0.91 respectively) compared to ResNet-18 model. The ResNet-18 model had better performance in other diagnostic measures of the pre-pubertal stage and all measures in the pubertal and post-pubertal stages. The highest overall diagnostic accuracy was also obtained using ResNet-18 model with the amount of 87.5% compared to 81% in designed CNN. Conclusion The artificial intelligence model trained in this study can receive images of cervical vertebrae and predict mandibular growth status by classifying it into one of three groups; before the growth spurt (pre-pubertal), during the growth spurt (pubertal), and after the growth spurt (post-pubertal). The highest accuracy is in post-pubertal stage with the designed networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dddd发布了新的文献求助10
刚刚
hahah发布了新的文献求助10
1秒前
yep完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
1秒前
大个应助yyy采纳,获得10
2秒前
你爹完成签到,获得积分10
2秒前
鳗鱼鞋垫完成签到 ,获得积分10
2秒前
dong发布了新的文献求助30
2秒前
3秒前
Lin发布了新的文献求助10
3秒前
Ll发布了新的文献求助50
3秒前
4秒前
晚风发布了新的文献求助10
4秒前
zjuroc发布了新的文献求助20
5秒前
坦率的松发布了新的文献求助10
5秒前
xiaokai完成签到,获得积分10
5秒前
5秒前
5秒前
Czy完成签到,获得积分10
5秒前
6秒前
小满完成签到,获得积分10
6秒前
文忉嫣完成签到,获得积分10
6秒前
6秒前
7秒前
落后秋柳完成签到,获得积分20
7秒前
Akim应助zz采纳,获得10
7秒前
8秒前
三九发布了新的文献求助10
9秒前
科研通AI5应助czq采纳,获得30
9秒前
10秒前
10秒前
10秒前
坦率的松完成签到,获得积分10
10秒前
传奇3应助贤惠的正豪采纳,获得10
11秒前
111发布了新的文献求助10
11秒前
三寒鸦完成签到,获得积分10
11秒前
小木棉发布了新的文献求助10
11秒前
11秒前
少年郎完成签到,获得积分20
12秒前
CipherSage应助123lura采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762