Liver fibrosis automatic diagnosis utilizing dense‐fusion attention contrastive learning network

肝纤维化 计算机科学 人工智能 领域(数学) 自然语言处理 医学 纤维化 病理 数学 纯数学
作者
Yuhui Guo,Tongtong Li,Ziyang Zhao,Qi Sun,Miao Chen,Yanli Jiang,Zhijun Yao,Bin Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17130
摘要

Abstract Background Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion‐Weighted Imaging (DWI) serves as a non‐invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer‐aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross‐comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. Purpose A self‐defined Multi‐view Contrastive Learning Network is developed to automatically classify multi‐parameter DWI images and explore synergies between different DWI parameters. Methods A Dense‐fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi‐view contrastive learning framework is constructed to train and extract features from raw multi‐parameter DWI. Besides, a Dense‐fusion module is designed to integrate feature and output predicted labels. Results We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad‐CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F‐1 score. Of note, the experimental results revealed that IVIM‐f, CTRW‐β, and MONO‐ADC exhibited significant recognition ability and complementarity. Conclusion Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi‐parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐沐发布了新的文献求助30
刚刚
123完成签到 ,获得积分10
1秒前
sam完成签到,获得积分20
1秒前
1秒前
1秒前
yvyvyv完成签到,获得积分10
1秒前
zho应助风清扬采纳,获得10
1秒前
zho应助风清扬采纳,获得10
1秒前
传奇3应助无情的宛儿采纳,获得10
1秒前
浮游应助duhang采纳,获得10
2秒前
133发布了新的文献求助10
5秒前
6秒前
忧虑的乘云完成签到,获得积分20
6秒前
123关注了科研通微信公众号
6秒前
等待晓筠完成签到,获得积分10
6秒前
7秒前
7秒前
yvyvyv发布了新的文献求助10
7秒前
7秒前
程璟曦关注了科研通微信公众号
7秒前
9秒前
nn发布了新的文献求助10
10秒前
小马甲应助Cmqq采纳,获得10
10秒前
caigou完成签到,获得积分10
10秒前
10秒前
安静的幻竹应助沐沐采纳,获得10
11秒前
czw发布了新的文献求助10
12秒前
12秒前
13秒前
FashionBoy应助小丸子采纳,获得10
14秒前
14秒前
深情安青应助阳光向秋采纳,获得10
15秒前
美羊羊发布了新的文献求助10
15秒前
ztt发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
星满窗完成签到,获得积分10
16秒前
打打应助舒服的青寒采纳,获得10
16秒前
少时4EVA发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396