Liver fibrosis automatic diagnosis utilizing dense‐fusion attention contrastive learning network

肝纤维化 计算机科学 人工智能 领域(数学) 自然语言处理 医学 纤维化 病理 数学 纯数学
作者
Yuhui Guo,Tongtong Li,Ziyang Zhao,Qi Sun,Miao Chen,Yanli Jiang,Zhijun Yao,Bin Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17130
摘要

Abstract Background Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion‐Weighted Imaging (DWI) serves as a non‐invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer‐aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross‐comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. Purpose A self‐defined Multi‐view Contrastive Learning Network is developed to automatically classify multi‐parameter DWI images and explore synergies between different DWI parameters. Methods A Dense‐fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi‐view contrastive learning framework is constructed to train and extract features from raw multi‐parameter DWI. Besides, a Dense‐fusion module is designed to integrate feature and output predicted labels. Results We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad‐CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F‐1 score. Of note, the experimental results revealed that IVIM‐f, CTRW‐β, and MONO‐ADC exhibited significant recognition ability and complementarity. Conclusion Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi‐parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助lmy采纳,获得10
1秒前
1秒前
嘉棯完成签到 ,获得积分10
1秒前
桥豆麻袋美少女完成签到,获得积分10
1秒前
1秒前
dev-evo发布了新的文献求助10
2秒前
愤怒的凤发布了新的文献求助10
2秒前
wsg发布了新的文献求助10
2秒前
李小喵完成签到,获得积分10
3秒前
4秒前
aladi1011发布了新的文献求助10
4秒前
4秒前
4秒前
C胖胖完成签到,获得积分10
4秒前
4秒前
5秒前
搜第一完成签到,获得积分10
5秒前
5秒前
复杂慕蕊完成签到,获得积分10
5秒前
5秒前
wanci应助我要吃挂面采纳,获得10
7秒前
7秒前
mx应助风起青禾采纳,获得10
7秒前
咕噜发布了新的文献求助10
8秒前
琉璃岁月发布了新的文献求助10
8秒前
9秒前
champagnefeng完成签到,获得积分10
9秒前
谭玲慧发布了新的文献求助10
9秒前
Singularity应助愤怒的凤采纳,获得10
9秒前
热心市民小红花应助lyw采纳,获得10
9秒前
u深度完成签到 ,获得积分10
10秒前
小石头发布了新的文献求助10
10秒前
10秒前
hh完成签到,获得积分10
10秒前
zhouz发布了新的文献求助10
11秒前
11秒前
11秒前
张佳伟发布了新的文献求助20
11秒前
Hello应助yuanttx采纳,获得10
11秒前
Jasen完成签到 ,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288