Liver fibrosis automatic diagnosis utilizing dense‐fusion attention contrastive learning network

肝纤维化 计算机科学 人工智能 领域(数学) 自然语言处理 医学 纤维化 病理 数学 纯数学
作者
Yuhui Guo,Tongtong Li,Ziyang Zhao,Qi Sun,Miao Chen,Yanli Jiang,Zhijun Yao,Bin Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17130
摘要

Abstract Background Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion‐Weighted Imaging (DWI) serves as a non‐invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer‐aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross‐comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. Purpose A self‐defined Multi‐view Contrastive Learning Network is developed to automatically classify multi‐parameter DWI images and explore synergies between different DWI parameters. Methods A Dense‐fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi‐view contrastive learning framework is constructed to train and extract features from raw multi‐parameter DWI. Besides, a Dense‐fusion module is designed to integrate feature and output predicted labels. Results We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad‐CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F‐1 score. Of note, the experimental results revealed that IVIM‐f, CTRW‐β, and MONO‐ADC exhibited significant recognition ability and complementarity. Conclusion Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi‐parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三三完成签到,获得积分10
1秒前
shuyou完成签到 ,获得积分10
1秒前
紫色风铃完成签到,获得积分0
1秒前
1111发布了新的文献求助30
2秒前
万能图书馆应助Yzy采纳,获得10
2秒前
zy完成签到,获得积分10
2秒前
香氛完成签到,获得积分10
2秒前
无花果应助果果糖YLJ采纳,获得10
3秒前
李卓完成签到,获得积分10
3秒前
maomao完成签到,获得积分10
3秒前
chen完成签到,获得积分10
3秒前
4秒前
上官若男应助Gracywss采纳,获得20
4秒前
关于我发布了新的文献求助20
4秒前
ganjqly完成签到,获得积分10
4秒前
阿飞完成签到,获得积分10
4秒前
裴果完成签到,获得积分10
4秒前
5秒前
樱铃完成签到,获得积分10
5秒前
啦啦啦完成签到 ,获得积分10
5秒前
yk完成签到 ,获得积分10
6秒前
我睡觉的时候不困完成签到 ,获得积分10
6秒前
阿苏完成签到 ,获得积分10
6秒前
颖火虫2588完成签到,获得积分10
6秒前
6秒前
7秒前
畅快雁山完成签到,获得积分10
7秒前
7秒前
寻找组织应助鳗鱼向日葵采纳,获得30
7秒前
稳住完成签到,获得积分10
8秒前
芝士完成签到,获得积分10
8秒前
善学以致用应助liulangnmg采纳,获得10
8秒前
Frank应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
Frank应助科研通管家采纳,获得10
9秒前
111aa发布了新的文献求助10
9秒前
子车茗应助超好运采纳,获得30
9秒前
转山转水转出了自我完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959