已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Liver fibrosis automatic diagnosis utilizing dense‐fusion attention contrastive learning network

肝纤维化 计算机科学 人工智能 领域(数学) 自然语言处理 医学 纤维化 病理 数学 纯数学
作者
Yuhui Guo,Tongtong Li,Ziyang Zhao,Qi Sun,Miao Chen,Yanli Jiang,Zhijun Yao,Bin Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17130
摘要

Abstract Background Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion‐Weighted Imaging (DWI) serves as a non‐invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer‐aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross‐comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. Purpose A self‐defined Multi‐view Contrastive Learning Network is developed to automatically classify multi‐parameter DWI images and explore synergies between different DWI parameters. Methods A Dense‐fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi‐view contrastive learning framework is constructed to train and extract features from raw multi‐parameter DWI. Besides, a Dense‐fusion module is designed to integrate feature and output predicted labels. Results We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad‐CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F‐1 score. Of note, the experimental results revealed that IVIM‐f, CTRW‐β, and MONO‐ADC exhibited significant recognition ability and complementarity. Conclusion Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi‐parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai发布了新的文献求助10
刚刚
ZZQ完成签到,获得积分10
2秒前
asd发布了新的文献求助10
2秒前
2秒前
4秒前
6秒前
小蘑菇应助Epiphany_wts采纳,获得10
6秒前
米酒汤圆发布了新的文献求助30
7秒前
violet完成签到 ,获得积分10
10秒前
若水完成签到 ,获得积分10
11秒前
11秒前
Yau完成签到,获得积分10
12秒前
kai完成签到,获得积分10
14秒前
wackykao完成签到 ,获得积分10
14秒前
15秒前
JamesPei应助Epiphany_wts采纳,获得10
17秒前
于可欣发布了新的文献求助10
18秒前
18秒前
实验耗材完成签到 ,获得积分10
19秒前
20秒前
雷马发布了新的文献求助10
20秒前
哈哈完成签到 ,获得积分10
20秒前
善学以致用应助Nebulon采纳,获得10
21秒前
zz完成签到 ,获得积分10
24秒前
边缘发布了新的文献求助10
25秒前
26秒前
之组长了完成签到 ,获得积分10
26秒前
pp发布了新的文献求助10
27秒前
12完成签到,获得积分10
29秒前
30秒前
充电宝应助小豆豆采纳,获得30
32秒前
嘻嘻哈哈应助薰衣草采纳,获得10
32秒前
爆米花应助开心的芹菜采纳,获得10
33秒前
33秒前
标致的巧荷完成签到,获得积分10
36秒前
星辰大海应助结实的秋凌采纳,获得10
37秒前
王博林发布了新的文献求助30
38秒前
科ke完成签到,获得积分10
41秒前
hitdsh应助刻苦笑南采纳,获得10
41秒前
yinch发布了新的文献求助20
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339