Liver fibrosis automatic diagnosis utilizing dense‐fusion attention contrastive learning network

肝纤维化 计算机科学 人工智能 领域(数学) 自然语言处理 医学 纤维化 病理 数学 纯数学
作者
Yuhui Guo,Tongtong Li,Ziyang Zhao,Qi Sun,Miao Chen,Yanli Jiang,Zhijun Yao,Bin Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17130
摘要

Abstract Background Liver fibrosis poses a significant public health challenge given its elevated incidence and associated mortality rates. Diffusion‐Weighted Imaging (DWI) serves as a non‐invasive diagnostic tool for supporting the identification of liver fibrosis. Deep learning, as a computer‐aided diagnostic technology, can assist in recognizing the stage of liver fibrosis by extracting abstract features from DWI images. However, gathering samples is often challenging, posing a common dilemma in previous research. Moreover, previous studies frequently overlooked the cross‐comparison information and latent connections among different DWI parameters. Thus, it is becoming a challenge to identify effective DWI parameters and dig potential features from multiple categories in a dataset with limited samples. Purpose A self‐defined Multi‐view Contrastive Learning Network is developed to automatically classify multi‐parameter DWI images and explore synergies between different DWI parameters. Methods A Dense‐fusion Attention Contrastive Learning Network (DACLN) is designed and used to recognize DWI images. Concretely, a multi‐view contrastive learning framework is constructed to train and extract features from raw multi‐parameter DWI. Besides, a Dense‐fusion module is designed to integrate feature and output predicted labels. Results We evaluated the performance of the proposed model on a set of real clinical data and analyzed the interpretability by Grad‐CAM and annotation analysis, achieving average scores of 0.8825, 0.8702, 0.8933, 0.8727, and 0.8779 for accuracy, precision, recall, specificity and F‐1 score. Of note, the experimental results revealed that IVIM‐f, CTRW‐β, and MONO‐ADC exhibited significant recognition ability and complementarity. Conclusion Our method achieves competitive accuracy in liver fibrosis diagnosis using the limited multi‐parameter DWI dataset and finds three types of DWI parameters with high sensitivity for diagnosing liver fibrosis, which suggests potential directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ma完成签到 ,获得积分10
2秒前
6秒前
栗子应助魔女采纳,获得10
6秒前
科研顺利发布了新的文献求助10
7秒前
7秒前
8秒前
情怀应助科研任采纳,获得10
9秒前
9秒前
9秒前
脑洞疼应助余鱼鱼采纳,获得10
10秒前
11秒前
12秒前
希望天下0贩的0应助hope采纳,获得10
13秒前
Xiaopei完成签到,获得积分10
13秒前
王慧发布了新的文献求助10
15秒前
16秒前
16秒前
Xiaopei发布了新的文献求助30
16秒前
17秒前
暂无发布了新的文献求助30
17秒前
pqy完成签到,获得积分10
18秒前
充电宝应助sreanior采纳,获得30
18秒前
CipherSage应助樱偶猫采纳,获得10
19秒前
20秒前
hope完成签到,获得积分10
21秒前
22秒前
22秒前
Jasper应助baili123采纳,获得10
22秒前
CipherSage应助Xiaopei采纳,获得30
23秒前
23秒前
miao发布了新的文献求助10
24秒前
今后应助fanpengzhen采纳,获得10
25秒前
25秒前
hope发布了新的文献求助10
26秒前
26秒前
Liao完成签到,获得积分10
26秒前
小萝卜莉完成签到,获得积分10
28秒前
小蘑菇应助Zz采纳,获得30
28秒前
29秒前
30秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478