Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing

自编码 高光谱成像 对抗制 计算机科学 人工智能 影子(心理学) 生成语法 模式识别(心理学) 计算机视觉 人工神经网络 心理学 心理治疗师
作者
Sun Bin,Yuanchao Su,He Sun,Jinying Bai,Pengfei Li,Feng Liu,Dongsheng Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3402256
摘要

Hyperspectral unmixing can handle the mixed pixels in hyperspectral images (HSIs). Shadows of objects in observed areas are recorded by sensors, resulting in an HSI contaminated by shadows. Therefore, shadow pollution is a grievous obstacle for unmixing applications. Although shadow pollution occurs frequently in HSIs, previous unmixing studies have never considered the interference caused by shadows. Hence, mitigating shadow interference for unmixing will be significant for further acquiring subpixel information. In this letter, we employ a generative adversarial autoencoder (GAA) to develop a supervised unmixing method that can substantially reduce the impacts of shadow for unmixing. Specifically, we adopt the GAA to establish an anti-shadow unmixing network (GAA-AS), where the encoder block is used to feature reinforcement, and the decoder serves for abundance estimation. Moreover, we adopt a spectral-aware loss (SAL) as the loss function of adversarial training, which makes the discriminator better capture the difference between pixels. Finally, a softmax layer is adopted for the abundance sum-to-one constraint (ASC). Several experiments verify the effectiveness and advantages of our GAA-AS. In the experiment with shadow-polluted data, the proposed GAA-AS improves accuracies by approximately 70 % compared to SOTA approaches in the quantitative experiment with synthetic data, and the impacts of shadow pollution are also significantly alleviated in the experiment with real shadow-polluted HSIs. Additionally, note that the proposed GAA-AS is competitive even when no shadow exists in HSIs, verified by the experiment with shadowless data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
刘智豪完成签到,获得积分10
4秒前
斯文败类应助apricity采纳,获得10
4秒前
ZhGeer发布了新的文献求助10
4秒前
qql发布了新的文献求助10
5秒前
5秒前
Menkaz发布了新的文献求助10
6秒前
6秒前
TOM完成签到,获得积分10
8秒前
大头完成签到 ,获得积分10
10秒前
熠熠完成签到,获得积分10
10秒前
格格巫发布了新的文献求助10
10秒前
10秒前
虚幻的凤完成签到,获得积分10
11秒前
执着的海完成签到,获得积分10
11秒前
1q完成签到,获得积分10
12秒前
Mathea发布了新的文献求助10
13秒前
Sarah发布了新的文献求助10
13秒前
isasi完成签到,获得积分10
14秒前
JunwenZhong完成签到,获得积分10
17秒前
疯狂的师完成签到,获得积分10
17秒前
18秒前
19秒前
19秒前
04亻完成签到,获得积分10
20秒前
迷你的无声完成签到,获得积分10
21秒前
小小发布了新的文献求助10
24秒前
apricity发布了新的文献求助10
24秒前
Jackson完成签到 ,获得积分10
25秒前
26秒前
zdx完成签到 ,获得积分20
26秒前
折折完成签到 ,获得积分10
27秒前
Cc发布了新的文献求助10
27秒前
Edmund似懂非懂完成签到,获得积分20
28秒前
29秒前
29秒前
30秒前
30秒前
bo完成签到 ,获得积分10
31秒前
hd完成签到,获得积分10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225537
求助须知:如何正确求助?哪些是违规求助? 4397211
关于积分的说明 13686001
捐赠科研通 4261743
什么是DOI,文献DOI怎么找? 2338660
邀请新用户注册赠送积分活动 1336070
关于科研通互助平台的介绍 1291974