Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing

自编码 高光谱成像 对抗制 计算机科学 人工智能 影子(心理学) 生成语法 模式识别(心理学) 计算机视觉 人工神经网络 心理学 心理治疗师
作者
Sun Bin,Yuanchao Su,He Sun,Jinying Bai,Pengfei Li,Feng Liu,Dongsheng Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3402256
摘要

Hyperspectral unmixing can handle the mixed pixels in hyperspectral images (HSIs). Shadows of objects in observed areas are recorded by sensors, resulting in an HSI contaminated by shadows. Therefore, shadow pollution is a grievous obstacle for unmixing applications. Although shadow pollution occurs frequently in HSIs, previous unmixing studies have never considered the interference caused by shadows. Hence, mitigating shadow interference for unmixing will be significant for further acquiring subpixel information. In this letter, we employ a generative adversarial autoencoder (GAA) to develop a supervised unmixing method that can substantially reduce the impacts of shadow for unmixing. Specifically, we adopt the GAA to establish an anti-shadow unmixing network (GAA-AS), where the encoder block is used to feature reinforcement, and the decoder serves for abundance estimation. Moreover, we adopt a spectral-aware loss (SAL) as the loss function of adversarial training, which makes the discriminator better capture the difference between pixels. Finally, a softmax layer is adopted for the abundance sum-to-one constraint (ASC). Several experiments verify the effectiveness and advantages of our GAA-AS. In the experiment with shadow-polluted data, the proposed GAA-AS improves accuracies by approximately 70 % compared to SOTA approaches in the quantitative experiment with synthetic data, and the impacts of shadow pollution are also significantly alleviated in the experiment with real shadow-polluted HSIs. Additionally, note that the proposed GAA-AS is competitive even when no shadow exists in HSIs, verified by the experiment with shadowless data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
懒洋洋大王完成签到,获得积分10
刚刚
刚刚
modoun完成签到 ,获得积分10
1秒前
大反应釜完成签到,获得积分10
1秒前
攒星星完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助150
2秒前
科研通AI5应助张琪采纳,获得200
2秒前
lalala发布了新的文献求助10
3秒前
4秒前
诸葛藏藏完成签到 ,获得积分10
5秒前
5秒前
结实的灯泡完成签到 ,获得积分20
6秒前
Air完成签到 ,获得积分10
7秒前
9秒前
小薛发布了新的文献求助10
9秒前
9秒前
安子歌完成签到,获得积分10
10秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
SciGPT应助photogragher采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得150
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
lalala完成签到,获得积分10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
烤冷面应助科研通管家采纳,获得30
12秒前
小戴应助科研通管家采纳,获得20
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4903429
求助须知:如何正确求助?哪些是违规求助? 4182000
关于积分的说明 12984141
捐赠科研通 3947419
什么是DOI,文献DOI怎么找? 2165166
邀请新用户注册赠送积分活动 1183456
关于科研通互助平台的介绍 1089838