亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing

自编码 高光谱成像 对抗制 计算机科学 人工智能 影子(心理学) 生成语法 模式识别(心理学) 计算机视觉 人工神经网络 心理学 心理治疗师
作者
Sun Bin,Yuanchao Su,He Sun,Jinying Bai,Pengfei Li,Feng Liu,Dongsheng Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3402256
摘要

Hyperspectral unmixing can handle the mixed pixels in hyperspectral images (HSIs). Shadows of objects in observed areas are recorded by sensors, resulting in an HSI contaminated by shadows. Therefore, shadow pollution is a grievous obstacle for unmixing applications. Although shadow pollution occurs frequently in HSIs, previous unmixing studies have never considered the interference caused by shadows. Hence, mitigating shadow interference for unmixing will be significant for further acquiring subpixel information. In this letter, we employ a generative adversarial autoencoder (GAA) to develop a supervised unmixing method that can substantially reduce the impacts of shadow for unmixing. Specifically, we adopt the GAA to establish an anti-shadow unmixing network (GAA-AS), where the encoder block is used to feature reinforcement, and the decoder serves for abundance estimation. Moreover, we adopt a spectral-aware loss (SAL) as the loss function of adversarial training, which makes the discriminator better capture the difference between pixels. Finally, a softmax layer is adopted for the abundance sum-to-one constraint (ASC). Several experiments verify the effectiveness and advantages of our GAA-AS. In the experiment with shadow-polluted data, the proposed GAA-AS improves accuracies by approximately 70 % compared to SOTA approaches in the quantitative experiment with synthetic data, and the impacts of shadow pollution are also significantly alleviated in the experiment with real shadow-polluted HSIs. Additionally, note that the proposed GAA-AS is competitive even when no shadow exists in HSIs, verified by the experiment with shadowless data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
Hillson完成签到,获得积分10
25秒前
淡淡菠萝完成签到 ,获得积分10
28秒前
53秒前
54秒前
嘟嘟嘟嘟发布了新的文献求助10
56秒前
善学以致用应助调皮千兰采纳,获得10
58秒前
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
BowieHuang应助沉默的倔驴采纳,获得10
1分钟前
BowieHuang应助沉默的倔驴采纳,获得10
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
科研通AI6应助调皮千兰采纳,获得10
1分钟前
田様应助at采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
3分钟前
冷酷的寒天完成签到,获得积分10
3分钟前
3分钟前
3分钟前
香蕉觅云应助冷酷的寒天采纳,获得10
3分钟前
3分钟前
sunfield2014发布了新的文献求助30
3分钟前
调皮千兰发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
凯旋预言完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
帮帮忙大佬x_x呜呜完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561486
求助须知:如何正确求助?哪些是违规求助? 4646588
关于积分的说明 14678693
捐赠科研通 4587873
什么是DOI,文献DOI怎么找? 2517244
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461520