Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing

自编码 高光谱成像 对抗制 计算机科学 人工智能 影子(心理学) 生成语法 模式识别(心理学) 计算机视觉 人工神经网络 心理学 心理治疗师
作者
Sun Bin,Yuanchao Su,He Sun,Jinying Bai,Pengfei Li,Feng Liu,Dongsheng Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3402256
摘要

Hyperspectral unmixing can handle the mixed pixels in hyperspectral images (HSIs). Shadows of objects in observed areas are recorded by sensors, resulting in an HSI contaminated by shadows. Therefore, shadow pollution is a grievous obstacle for unmixing applications. Although shadow pollution occurs frequently in HSIs, previous unmixing studies have never considered the interference caused by shadows. Hence, mitigating shadow interference for unmixing will be significant for further acquiring subpixel information. In this letter, we employ a generative adversarial autoencoder (GAA) to develop a supervised unmixing method that can substantially reduce the impacts of shadow for unmixing. Specifically, we adopt the GAA to establish an anti-shadow unmixing network (GAA-AS), where the encoder block is used to feature reinforcement, and the decoder serves for abundance estimation. Moreover, we adopt a spectral-aware loss (SAL) as the loss function of adversarial training, which makes the discriminator better capture the difference between pixels. Finally, a softmax layer is adopted for the abundance sum-to-one constraint (ASC). Several experiments verify the effectiveness and advantages of our GAA-AS. In the experiment with shadow-polluted data, the proposed GAA-AS improves accuracies by approximately 70 % compared to SOTA approaches in the quantitative experiment with synthetic data, and the impacts of shadow pollution are also significantly alleviated in the experiment with real shadow-polluted HSIs. Additionally, note that the proposed GAA-AS is competitive even when no shadow exists in HSIs, verified by the experiment with shadowless data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大大怪将军完成签到,获得积分10
1秒前
丰知然应助zhangqq采纳,获得10
1秒前
提莫蘑菇完成签到,获得积分10
1秒前
3秒前
4秒前
脑洞疼应助小期待采纳,获得30
5秒前
NN完成签到 ,获得积分10
6秒前
礼拜天完成签到,获得积分10
6秒前
6秒前
FashionBoy应助细心的凌香采纳,获得10
6秒前
7秒前
7秒前
云_123发布了新的文献求助10
8秒前
文艺的老太完成签到,获得积分10
8秒前
8秒前
平平无奇完成签到,获得积分10
8秒前
要减肥的冰姬完成签到,获得积分10
9秒前
水博士发布了新的文献求助10
10秒前
Frank应助romio采纳,获得10
10秒前
王冰洁完成签到,获得积分10
11秒前
12秒前
Easycup发布了新的文献求助10
12秒前
13秒前
13秒前
Joey完成签到,获得积分10
13秒前
kayla发布了新的文献求助10
14秒前
正在输入中应助mxh695636455采纳,获得10
14秒前
云_123完成签到,获得积分10
15秒前
Ting应助LAN0528采纳,获得10
15秒前
YH2完成签到,获得积分10
16秒前
Sarah悦发布了新的文献求助10
16秒前
18秒前
王达庆完成签到,获得积分10
19秒前
19秒前
沉默翠芙发布了新的文献求助10
19秒前
玩命的化蛹完成签到,获得积分10
19秒前
19秒前
21秒前
WH驳回了张益萌应助
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295786
求助须知:如何正确求助?哪些是违规求助? 2931649
关于积分的说明 8453323
捐赠科研通 2604317
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661048
邀请新用户注册赠送积分活动 644016