Generative Adversarial Autoencoder Network for Anti-Shadow Hyperspectral Unmixing

自编码 高光谱成像 对抗制 计算机科学 人工智能 影子(心理学) 生成语法 模式识别(心理学) 计算机视觉 人工神经网络 心理学 心理治疗师
作者
Sun Bin,Yuanchao Su,He Sun,Jinying Bai,Pengfei Li,Feng Liu,Dongsheng Liu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3402256
摘要

Hyperspectral unmixing can handle the mixed pixels in hyperspectral images (HSIs). Shadows of objects in observed areas are recorded by sensors, resulting in an HSI contaminated by shadows. Therefore, shadow pollution is a grievous obstacle for unmixing applications. Although shadow pollution occurs frequently in HSIs, previous unmixing studies have never considered the interference caused by shadows. Hence, mitigating shadow interference for unmixing will be significant for further acquiring subpixel information. In this letter, we employ a generative adversarial autoencoder (GAA) to develop a supervised unmixing method that can substantially reduce the impacts of shadow for unmixing. Specifically, we adopt the GAA to establish an anti-shadow unmixing network (GAA-AS), where the encoder block is used to feature reinforcement, and the decoder serves for abundance estimation. Moreover, we adopt a spectral-aware loss (SAL) as the loss function of adversarial training, which makes the discriminator better capture the difference between pixels. Finally, a softmax layer is adopted for the abundance sum-to-one constraint (ASC). Several experiments verify the effectiveness and advantages of our GAA-AS. In the experiment with shadow-polluted data, the proposed GAA-AS improves accuracies by approximately 70 % compared to SOTA approaches in the quantitative experiment with synthetic data, and the impacts of shadow pollution are also significantly alleviated in the experiment with real shadow-polluted HSIs. Additionally, note that the proposed GAA-AS is competitive even when no shadow exists in HSIs, verified by the experiment with shadowless data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西宁完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
icecream完成签到,获得积分20
4秒前
vergegung完成签到,获得积分10
4秒前
5秒前
宝铭YUAN完成签到,获得积分10
6秒前
哇哦哦完成签到,获得积分20
7秒前
vergegung发布了新的文献求助30
8秒前
顾矜应助jkhjkhj采纳,获得10
8秒前
8秒前
酷炫的__发布了新的文献求助10
9秒前
9秒前
Akim应助gi采纳,获得10
10秒前
xixixi发布了新的文献求助10
10秒前
sevenhill应助露露采纳,获得10
10秒前
11秒前
搜集达人应助大灯泡采纳,获得10
12秒前
清脆香露完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
石石刘发布了新的文献求助20
14秒前
vv完成签到 ,获得积分10
15秒前
优秀的人发布了新的文献求助10
15秒前
16秒前
大模型应助yy采纳,获得10
16秒前
18秒前
18秒前
金金子发布了新的文献求助30
18秒前
17完成签到 ,获得积分10
18秒前
单于远山完成签到 ,获得积分10
19秒前
科研通AI2S应助xiaobai采纳,获得10
20秒前
赘婿应助hebhm采纳,获得10
20秒前
Ava应助顺心的巨人采纳,获得10
20秒前
小青椒应助xuejie采纳,获得30
21秒前
不安冰棍完成签到,获得积分10
21秒前
维克托雷完成签到,获得积分10
23秒前
新年发布了新的文献求助10
23秒前
陈龙完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458