Oriented Object Detector With Gaussian Distribution Cost Label Assignment and Task-Decoupled Head

计算机科学 目标检测 探测器 人工智能 旋转(数学) 计算机视觉 水准点(测量) 高斯分布 高斯过程 模式识别(心理学) 电信 物理 量子力学 大地测量学 地理
作者
Qiangqiang Huang,Ruilin Yao,Xiaoqiang Lu,Jishuai Zhu,Shengwu Xiong,Yaxiong Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16
标识
DOI:10.1109/tgrs.2024.3395440
摘要

Recently, oriented object detection in remote sensing images has garnered significant attention due to its broad range of applications. Early oriented object detection adhered to the established general object detection frameworks, utilizing the label assignment strategy based on the horizontal bounding box annotations or rotation-agnostic cost function. Such strategy may not reflect the large aspect ratio and rotation of arbitrary-oriented objects in remota sensing images and require high parameter-tuning efforts in training process, which will eventually harm the detector performance. Furthermore, the localization quality of oriented object depends on precise rotation angle prediction, exacerbating the inconsistency between classification and regression tasks in oriented object detection. To address these issues, we propose the Gaussian Distribution Cost Optimal Transport Assignment (GCOTA) and Decoupled Layer Attention Angle Head (DLAAH). Specifically, GCOTA utilize Gaussian distribution based cost function for the optimal transport label assignment in training process, alleviating the impact of rotation angle and large aspect ratio in remote sensing images. DLAAH predicts rotation angle independently and incorporates layer attention to obtain the task-specific features based on the shared FPN features, enhancing the angle prediction and improving consistency across different tasks. Based on these proposed components, we present an anchor-free oriented detector, namely Gaussian Distribution and Task-Decoupled head oriented Detector(GTDet) and a a multi-class ship detection dataset in real scenarios (CGWX), which provides a benchmark for fine-grained object recognition in remote sensing images. Comprehensive experiments are conducted on CGWX and several public challenging datasets, including DOTAv1.0, HRSC2016, to demonstrate that our method achieves superior performance on oriented object detection task. The code is available at https://github.com/WUTCM-Lab/GTDet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Llllll完成签到,获得积分10
刚刚
orixero应助梦华老师采纳,获得10
1秒前
大橙子发布了新的文献求助10
2秒前
gaoyang123完成签到 ,获得积分10
2秒前
qwe1108完成签到 ,获得积分10
2秒前
3秒前
jane完成签到 ,获得积分10
6秒前
8秒前
瑾玉完成签到,获得积分10
8秒前
10秒前
Akim应助duckspy采纳,获得10
10秒前
那种完成签到,获得积分10
10秒前
liuyanq完成签到,获得积分20
10秒前
11秒前
普鲁卡因发布了新的文献求助10
12秒前
加油杨完成签到 ,获得积分10
13秒前
liuyanq发布了新的文献求助10
16秒前
随风完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
21秒前
米九完成签到,获得积分10
23秒前
zhao完成签到,获得积分10
26秒前
普鲁卡因发布了新的文献求助10
26秒前
zj完成签到,获得积分10
32秒前
蓝橙完成签到,获得积分10
33秒前
37秒前
GD88完成签到,获得积分10
38秒前
糟糕的梨愁完成签到,获得积分10
39秒前
莫西莫西完成签到 ,获得积分10
40秒前
小趴蔡完成签到 ,获得积分10
42秒前
唐唐发布了新的文献求助10
42秒前
飘逸剑身完成签到,获得积分10
45秒前
airtermis完成签到 ,获得积分10
45秒前
gfasdjsjdsjd完成签到,获得积分10
46秒前
46秒前
杨宁完成签到 ,获得积分10
46秒前
MchemG应助transition采纳,获得20
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
lxy发布了新的文献求助10
50秒前
gfasdjsjdsjd发布了新的文献求助10
51秒前
JCao727完成签到,获得积分10
51秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022