GMIM: Self-supervised pre-training for 3D medical image segmentation with adaptive and hierarchical masked image modeling

计算机科学 人工智能 分割 特征学习 机器学习 编码器 模式识别(心理学) 深度学习 图像分割 计算机视觉 操作系统
作者
Liangce Qi,Zhengang Jiang,Weili Shi,Feng Qu,Guanyuan Feng
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:176: 108547-108547 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108547
摘要

Self-supervised pre-training and fully supervised fine-tuning paradigms have received much attention to solve the data annotation problem in deep learning fields. Compared with traditional pre-training on large natural image datasets, medical self-supervised learning methods learn rich representations derived from unlabeled data itself thus avoiding the distribution shift between different image domains. However, nowadays state-of-the-art medical pre-training methods were specifically designed for downstream tasks making them less flexible and difficult to apply to new tasks. In this paper, we propose grid mask image modeling, a flexible and general self-supervised method to pre-train medical vision transformers for 3D medical image segmentation. Our goal is to guide networks to learn the correlations between organs and tissues by reconstructing original images based on partial observations. The relationships are consistent within the human body and invariant to disease type or imaging modality. To achieve this, we design a Siamese framework consisting of an online branch and a target branch. An adaptive and hierarchical masking strategy is employed in the online branch to (1) learn the boundaries or small contextual mutation regions within images; (2) to learn high-level semantic representations from deeper layers of the multiscale encoder. In addition, the target branch provides representations for contrastive learning to further reduce representation redundancy. We evaluate our method through segmentation performance on two public datasets. The experimental results demonstrate our method outperforms other self-supervised methods. Codes are available at https://github.com/mobiletomb/Gmim.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CD发布了新的文献求助10
刚刚
1秒前
yan123发布了新的文献求助10
2秒前
2秒前
充电宝应助yyj采纳,获得10
2秒前
马静雨发布了新的文献求助10
2秒前
云游归尘发布了新的文献求助10
3秒前
4秒前
111发布了新的文献求助10
4秒前
寰宇完成签到,获得积分10
4秒前
4秒前
5秒前
花田雨桐发布了新的文献求助10
5秒前
5秒前
小马甲应助lieditongxu采纳,获得10
5秒前
Jenny应助yan123采纳,获得10
6秒前
狂野的以珊完成签到,获得积分10
6秒前
6秒前
a1oft发布了新的文献求助10
7秒前
7秒前
7秒前
笨笨的不斜完成签到,获得积分10
7秒前
xtqgyy发布了新的文献求助10
7秒前
8秒前
Cat完成签到,获得积分0
8秒前
科研小菜完成签到,获得积分10
9秒前
江南烟雨如笙完成签到,获得积分10
9秒前
9秒前
stt关闭了stt文献求助
9秒前
10秒前
yangang发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
zhui发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
文献缺缺应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794