粒径
纳米颗粒
材料科学
粒子(生态学)
核糖核酸
纳米技术
化学物理
化学工程
色谱法
化学
物理化学
生物化学
生物
生态学
基因
工程类
作者
Sixuan Li,Yizong Hu,Jinghan Lin,Zachary Schneiderman,Fangchi Shao,Lai Wei,Andrew Li,Kuangwen Hsieh,Efrosini Kokkoli,Tine Curk,Hai‐Quan Mao,Tza‐Huei Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-06-05
卷期号:18 (24): 15729-15743
被引量:2
标识
DOI:10.1021/acsnano.4c02341
摘要
Lipid nanoparticles (LNP) have emerged as pivotal delivery vehicles for RNA therapeutics. Previous research and development usually assumed that LNPs are homogeneous in population, loading density, and composition. Such perspectives are difficult to examine due to the lack of suitable tools to characterize these physicochemical properties at the single-nanoparticle level. Here, we report an integrated spectroscopy–chromatography approach as a generalizable strategy to dissect the complexities of multicomponent LNP assembly. Our platform couples cylindrical illumination confocal spectroscopy (CICS) with single-nanoparticle free solution hydrodynamic separation (SN-FSHS) to simultaneously profile population identity, hydrodynamic size, RNA loading levels, and distributions of helper lipid and PEGylated lipid of LNPs at the single-particle level and in a high-throughput manner. Using a benchmark siRNA LNP formulation, we demonstrate the capability of this platform by distinguishing seven distinct LNP populations, quantitatively characterizing size distribution and RNA loading level in wide ranges, and more importantly, resolving composition-size correlations. This SN-FSHS-CICS analysis provides critical insights into a substantial degree of heterogeneity in the packing density of RNA in LNPs and size-dependent loading-size correlations, explained by kinetics-driven assembly mechanisms of RNA LNPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI