Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 材料科学 冶金 心理测量学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:1
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
约三十应助干净柏柳采纳,获得10
刚刚
昵称完成签到,获得积分10
刚刚
向峻熙发布了新的文献求助10
1秒前
慕青应助淡淡半山采纳,获得10
1秒前
顺利毕业发布了新的文献求助10
2秒前
Fergusonxiong应助阿越采纳,获得10
2秒前
2秒前
心想事成发布了新的文献求助10
4秒前
酷波er应助潜竹采纳,获得10
4秒前
greenghost发布了新的文献求助10
5秒前
路奇k完成签到,获得积分10
6秒前
秋听寒发布了新的文献求助10
6秒前
手术刀完成签到 ,获得积分10
7秒前
ding应助jennie采纳,获得10
8秒前
Orange应助burn采纳,获得10
8秒前
8秒前
8秒前
9秒前
kk发布了新的文献求助10
10秒前
10秒前
10秒前
立仔发布了新的文献求助10
11秒前
11秒前
12秒前
秋听寒完成签到,获得积分10
13秒前
酷酷阑香发布了新的文献求助10
13秒前
无花果应助CoCo采纳,获得10
14秒前
火火发布了新的文献求助10
14秒前
dylaner完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
希望天下0贩的0应助Hou采纳,获得10
16秒前
16秒前
liuxuwei发布了新的文献求助10
16秒前
16秒前
被划分发布了新的文献求助10
17秒前
17秒前
壮壮发布了新的文献求助10
18秒前
cc发布了新的文献求助10
19秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167