Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助包容代芹采纳,获得10
刚刚
云馨完成签到,获得积分10
刚刚
幽灵发布了新的文献求助10
1秒前
专注的问寒应助黄老牛采纳,获得150
2秒前
bukeshuo发布了新的文献求助10
3秒前
agrlook完成签到,获得积分10
3秒前
小二郎应助chen采纳,获得10
3秒前
5秒前
专注的问寒应助Seona采纳,获得20
5秒前
大个应助xujingyi采纳,获得10
6秒前
biubiubiu发布了新的文献求助10
6秒前
劉劉完成签到 ,获得积分10
7秒前
xz发布了新的文献求助20
9秒前
univ完成签到,获得积分10
10秒前
笑傲江湖完成签到,获得积分10
10秒前
12秒前
kid完成签到,获得积分10
12秒前
Jasper应助123456采纳,获得30
12秒前
lc发布了新的文献求助10
12秒前
12秒前
小白完成签到 ,获得积分10
12秒前
研友_VZG7GZ应助独特的高山采纳,获得10
13秒前
13秒前
14秒前
14秒前
温暖发布了新的文献求助10
16秒前
kid发布了新的文献求助10
16秒前
Dskelf完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
111给111的求助进行了留言
19秒前
123456完成签到 ,获得积分10
19秒前
香蕉从寒完成签到,获得积分10
22秒前
23秒前
小二郎应助坦率老头采纳,获得10
23秒前
23秒前
利于蓄力完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858