Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 材料科学 冶金 心理测量学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹏虫虫完成签到 ,获得积分10
刚刚
完美世界应助love采纳,获得10
刚刚
1秒前
2秒前
Albee发布了新的文献求助10
2秒前
自己的样子好好看完成签到,获得积分10
2秒前
赘婿应助激情的诗柳采纳,获得10
3秒前
肖小张完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
科研通AI2S应助白江虎采纳,获得10
6秒前
WZ完成签到,获得积分10
6秒前
BCKT完成签到,获得积分10
6秒前
adam完成签到,获得积分10
7秒前
9秒前
9秒前
iedith018完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
wanci应助老实紫萱采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
香蕉诗蕊应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
zjj发布了新的文献求助10
13秒前
13秒前
13秒前
xiaofang完成签到,获得积分10
14秒前
14秒前
love发布了新的文献求助10
14秒前
安详猕猴桃完成签到,获得积分10
15秒前
汉堡包应助承乐采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569633
求助须知:如何正确求助?哪些是违规求助? 4654420
关于积分的说明 14710265
捐赠科研通 4595934
什么是DOI,文献DOI怎么找? 2522161
邀请新用户注册赠送积分活动 1493390
关于科研通互助平台的介绍 1463987