Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 材料科学 冶金 心理测量学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助丁莞采纳,获得10
刚刚
2秒前
LDDLleor应助南巷的用户名采纳,获得10
2秒前
徐桐发布了新的文献求助10
3秒前
wangdao完成签到,获得积分10
3秒前
活力的问兰关注了科研通微信公众号
3秒前
所所应助烂漫猫咪采纳,获得10
3秒前
情怀应助俞百强采纳,获得10
4秒前
危机的觅风完成签到 ,获得积分10
5秒前
5秒前
kk发布了新的文献求助10
5秒前
6秒前
7秒前
认真的梦竹完成签到,获得积分20
7秒前
小小旭呀发布了新的文献求助10
7秒前
7秒前
小路发布了新的文献求助10
8秒前
BINGBING1230发布了新的文献求助10
10秒前
10秒前
10秒前
lxb完成签到,获得积分20
10秒前
做不出来完成签到,获得积分10
11秒前
麦乐迪发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
13秒前
14秒前
情怀应助徐桐采纳,获得10
14秒前
14秒前
丁莞发布了新的文献求助10
14秒前
隐形的梦桃完成签到,获得积分10
15秒前
mjt发布了新的文献求助10
15秒前
温暖幻灵完成签到,获得积分10
15秒前
我是老大应助复杂惜霜采纳,获得10
15秒前
动听裙子发布了新的文献求助10
15秒前
16秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308721
求助须知:如何正确求助?哪些是违规求助? 4453758
关于积分的说明 13858004
捐赠科研通 4341502
什么是DOI,文献DOI怎么找? 2383910
邀请新用户注册赠送积分活动 1378541
关于科研通互助平台的介绍 1346541