Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
尊敬冰巧发布了新的文献求助20
1秒前
Rondab应助fanicky采纳,获得10
1秒前
香蕉觅云应助独特的从露采纳,获得10
2秒前
2秒前
紫韵完成签到,获得积分20
2秒前
鲤鱼寒荷发布了新的文献求助10
2秒前
愉快的哈密瓜完成签到,获得积分10
2秒前
YJJ完成签到,获得积分10
2秒前
852应助甜甜木各格采纳,获得10
2秒前
2秒前
ding应助zhendezy采纳,获得10
3秒前
3秒前
3秒前
鲍binyu发布了新的文献求助20
3秒前
深情安青应助Huanghh采纳,获得10
4秒前
七月流火给静夜谧思的求助进行了留言
4秒前
4秒前
4秒前
orixero应助solar@2030采纳,获得10
4秒前
加油吧少年完成签到,获得积分10
5秒前
大模型应助lllll采纳,获得10
5秒前
YH完成签到,获得积分10
5秒前
guohang发布了新的文献求助10
5秒前
5秒前
小丑鱼完成签到,获得积分20
5秒前
明天见完成签到 ,获得积分10
6秒前
Anna发布了新的文献求助10
6秒前
风雨中飘摇应助大家好采纳,获得30
6秒前
小星星完成签到,获得积分20
7秒前
朝花夕拾发布了新的文献求助10
7秒前
besatified完成签到,获得积分10
7秒前
kui水买完成签到,获得积分10
8秒前
dyy发布了新的文献求助10
8秒前
LiuShenglan发布了新的文献求助10
8秒前
Yatpome发布了新的文献求助10
8秒前
9秒前
Owen应助zjd采纳,获得10
9秒前
松大宝完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960337
求助须知:如何正确求助?哪些是违规求助? 3506438
关于积分的说明 11130396
捐赠科研通 3238607
什么是DOI,文献DOI怎么找? 1789826
邀请新用户注册赠送积分活动 871947
科研通“疑难数据库(出版商)”最低求助积分说明 803099