已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpp完成签到,获得积分10
刚刚
1秒前
Unifrog发布了新的文献求助30
1秒前
筱xiao完成签到 ,获得积分10
2秒前
2秒前
欣喜的如冬完成签到 ,获得积分10
3秒前
zpp发布了新的文献求助40
4秒前
hansongluo完成签到 ,获得积分10
4秒前
4秒前
bukeshuo发布了新的文献求助10
5秒前
丘比特应助绘梨衣采纳,获得10
6秒前
8秒前
听风者完成签到 ,获得积分10
8秒前
zxj完成签到 ,获得积分10
9秒前
小马甲应助南北采纳,获得10
9秒前
踏实南瓜胖墩墩完成签到,获得积分20
11秒前
小马甲应助fanfan采纳,获得10
12秒前
12秒前
演化的蛙鱼发布了新的文献求助200
12秒前
xxx完成签到 ,获得积分10
12秒前
orixero应助糊涂的白梦采纳,获得10
12秒前
12秒前
13秒前
juan完成签到 ,获得积分10
13秒前
崽崽发布了新的文献求助10
16秒前
16秒前
充电宝应助qiaojunys采纳,获得10
17秒前
blue发布了新的文献求助20
17秒前
平淡夏云发布了新的文献求助10
17秒前
Hello应助123y采纳,获得10
18秒前
orixero应助程俊扬采纳,获得10
18秒前
20秒前
20秒前
Anffeny完成签到,获得积分10
21秒前
完美世界应助Jiale采纳,获得10
22秒前
星辰大海应助嘿111采纳,获得10
22秒前
cenghao发布了新的文献求助10
23秒前
23秒前
赛赛发布了新的文献求助10
23秒前
归尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620