Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得30
1秒前
1秒前
wei发布了新的文献求助10
6秒前
alex12259完成签到 ,获得积分10
14秒前
Wang完成签到 ,获得积分20
18秒前
Nancy完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
22秒前
qianci2009完成签到,获得积分0
22秒前
对对对完成签到 ,获得积分10
26秒前
plz94完成签到 ,获得积分10
32秒前
wei完成签到,获得积分10
38秒前
艺术家完成签到 ,获得积分10
38秒前
葡萄小伊ovo完成签到 ,获得积分10
44秒前
JamesPei应助xp1911采纳,获得10
45秒前
结实凌瑶完成签到 ,获得积分10
45秒前
46秒前
美好灵寒完成签到 ,获得积分10
48秒前
fhw完成签到 ,获得积分10
49秒前
Sofia完成签到 ,获得积分0
50秒前
51秒前
Thi发布了新的文献求助10
58秒前
乐观的箭头完成签到,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
dejavu完成签到,获得积分10
1分钟前
大甜甜完成签到 ,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助xp1911采纳,获得10
1分钟前
1分钟前
滴滴完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SW冒险家完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
耍酷的指甲油完成签到 ,获得积分10
1分钟前
陈秋发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
GRATE完成签到 ,获得积分10
1分钟前
点点完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013