Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 材料科学 冶金 心理测量学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ding应助陈大浩浩采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
zzk完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
xinyuli发布了新的文献求助10
5秒前
铭名洺完成签到 ,获得积分10
6秒前
6秒前
在水一方应助我的阳光采纳,获得10
7秒前
zmm完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
热情笑卉完成签到,获得积分10
9秒前
晨风发布了新的文献求助10
9秒前
暴躁的太阳完成签到,获得积分10
10秒前
tigger发布了新的文献求助10
10秒前
wzx发布了新的文献求助20
10秒前
10秒前
王志鹏完成签到 ,获得积分10
11秒前
xss发布了新的文献求助10
11秒前
李爱国应助sunstar采纳,获得10
12秒前
文艺代灵完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
DUAN完成签到,获得积分10
13秒前
科研小蔡发布了新的文献求助10
14秒前
田di完成签到 ,获得积分10
14秒前
15秒前
科研通AI6应助雷培采纳,获得10
16秒前
16秒前
actor2006发布了新的文献求助100
16秒前
16秒前
16秒前
16秒前
无花果应助FFFF采纳,获得30
16秒前
tantan完成签到,获得积分10
17秒前
踏实采波完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142