Automatic evaluation of Nail Psoriasis Severity Index using deep learning algorithm

医学 银屑病 组内相关 皮肤病科 钉子(扣件) 人工智能 计算机科学 临床心理学 心理测量学 冶金 材料科学
作者
Kyungho Paik,Bo Ri Kim,Sang Woong Youn
出处
期刊:Journal of Dermatology [Wiley]
被引量:2
标识
DOI:10.1111/1346-8138.17313
摘要

Abstract Nail psoriasis is a chronic condition characterized by nail dystrophy affecting the nail matrix and bed. The severity of nail psoriasis is commonly assessed using the Nail Psoriasis Severity Index (NAPSI), which evaluates the characteristics and extent of nail involvement. Although the NAPSI is numeric, reproducible, and simple, the assessment process is time‐consuming and often challenging to use in real‐world clinical settings. To overcome the time‐consuming nature of NAPSI assessment, we aimed to develop a deep learning algorithm that can rapidly and reliably evaluate NAPSI, thereby providing numerous clinical and research advantages. We developed a dataset consisting of 7054 single fingernail images cropped from images of the dorsum of the hands of 634 patients with psoriasis. We annotated the eight features of the NAPSI in a single nail using bounding boxes and trained the YOLOv7‐based deep learning algorithm using this annotation. The performance of the deep learning algorithm (DLA) was evaluated by comparing the NAPSI estimated using the DLA with the ground truth of the test dataset. The NAPSI evaluated using the DLA differed by 2 points from the ground truth in 98.6% of the images. The accuracy and mean absolute error of the model were 67.6% and 0.449, respectively. The intraclass correlation coefficient was 0.876, indicating good agreement. Our results showed that the DLA can rapidly and accurately evaluate the NAPSI. The rapid and accurate NAPSI assessment by the DLA is not only applicable in clinical settings, but also provides research advantages by enabling rapid NAPSI evaluations of previously collected nail images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
good慧发布了新的文献求助10
刚刚
刚刚
Flynn飞完成签到,获得积分20
3秒前
大个应助1sss采纳,获得10
3秒前
李健应助雨潇潇采纳,获得10
3秒前
涯123发布了新的文献求助10
4秒前
宇宙拿铁完成签到 ,获得积分10
4秒前
4秒前
狂野东蒽完成签到,获得积分20
5秒前
6秒前
7秒前
昏黄完成签到,获得积分10
9秒前
9秒前
fuws完成签到 ,获得积分10
9秒前
不安太阳完成签到,获得积分10
10秒前
桐桐应助莫宝采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
心理学四完成签到,获得积分10
12秒前
12秒前
chenyimei发布了新的文献求助200
13秒前
13秒前
彭于晏应助杨飞采纳,获得10
14秒前
Zhang完成签到,获得积分10
14秒前
YOUNG-M发布了新的文献求助10
14秒前
15秒前
叶叶应助YunOH采纳,获得10
16秒前
16秒前
cc完成签到,获得积分10
16秒前
17秒前
18秒前
雨潇潇发布了新的文献求助10
18秒前
南城发布了新的文献求助10
18秒前
18秒前
19秒前
1sss发布了新的文献求助10
21秒前
21秒前
21秒前
传奇3应助Plusonezzz采纳,获得10
21秒前
21秒前
哈哈哈发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617