Artificial Intelligence‐Powered Molecular Docking

对接(动物) 计算机科学 人工智能 计算生物学 生物 医学 护理部
作者
Nabajit Kumar Borah,Yukti Tripathi,Aastha Tanwar,Deeksha Tiwari,Aditi Sinha,Shailja Sharma,Neetu Jabalia,Ruchi Jakhmola Mani,Seneha Santoshi,Hina Bansal
标识
DOI:10.1002/9781394234196.ch6
摘要

Molecular docking is a vital computational method for predicting how small molecules bind to target proteins, aiding drug discovery. It involves screening vast small molecule databases to identify potential drug candidates, relying on scoring functions to rank them. This interaction between proteins and ligands is the cornerstone of drug design. Integrating artificial intelligence (AI) algorithms has revolutionized this field, boosting efficiency and accuracy. This chapter explores various docking techniques, with a focus on AI-based methods. Neural networks, reinforcement learning, and evolutionary algorithms play pivotal roles, enhancing prediction accuracy and speed by utilizing deep learning models trained on extensive protein– ligand datasets. This integration has the potential to expedite drug discovery. Recognizing that AI is not a standalone solution, the chapter emphasizes the need for integration with other methodologies to achieve comprehensive drug discovery. It also addresses the challenges and limitations of AI in molecular docking, pointing toward future research directions. In summary, AI-driven advancements in molecular docking offer a promising pathway to accelerate drug discovery while recognizing the need for a holistic approach in the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的问寒应助墨菲采纳,获得20
刚刚
1秒前
1秒前
慕青应助猛犸象冲冲冲采纳,获得10
2秒前
Akim应助王凡渡采纳,获得10
3秒前
999z完成签到,获得积分10
3秒前
David完成签到,获得积分10
3秒前
刘辞忧完成签到,获得积分10
3秒前
3秒前
自然画笔关注了科研通微信公众号
3秒前
3秒前
4秒前
ding应助研友采纳,获得10
4秒前
5秒前
5秒前
余喆完成签到,获得积分10
6秒前
Sandy11完成签到,获得积分10
6秒前
李健应助木小叶采纳,获得10
6秒前
7秒前
李爱国应助刘66666采纳,获得10
7秒前
连衣裙完成签到,获得积分10
7秒前
难过的谷芹应助南笙几梦采纳,获得10
7秒前
活力断天完成签到,获得积分10
7秒前
李一一发布了新的文献求助10
8秒前
qiqi完成签到,获得积分10
8秒前
了喔啰完成签到,获得积分10
8秒前
宁静致远发布了新的文献求助10
8秒前
打打应助mnc采纳,获得10
9秒前
9秒前
Anima完成签到,获得积分10
9秒前
10秒前
10秒前
12秒前
12秒前
怜南完成签到,获得积分10
12秒前
13秒前
彭泽阳完成签到,获得积分10
13秒前
哈哈哈哈哈完成签到,获得积分10
14秒前
14秒前
任无施发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636998
求助须知:如何正确求助?哪些是违规求助? 4742430
关于积分的说明 14997256
捐赠科研通 4795195
什么是DOI,文献DOI怎么找? 2561870
邀请新用户注册赠送积分活动 1521362
关于科研通互助平台的介绍 1481478