亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Music-Driven Synchronous Dance Generation Considering K-Pop Musical and Choreographical Characteristics

舞蹈 计算机科学 音乐剧 编舞 多媒体 流行音乐 人工智能 语音识别 视觉艺术 艺术
作者
Seohyun Kim,Kyogu Lee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 94152-94163
标识
DOI:10.1109/access.2024.3420433
摘要

Generating dance movements from music has been considered a highly challenging task, as it requires the model to comprehend concepts from two different modalities: audio and video. However, recently, research on dance generation based on deep learning has been actively conducted. Existing dance generation researches tend to focus on generating dances in limited genres or for single dancer, so when K-pop music that mixes multiple genres was applied to existing methods, they failed to generate dances of various genres or group dances. In this paper, we propose the K-pop dance generation model in an autoregressive manner, a system designed to generate two-person synchronous dances based on K-pop music. To achieve this, we created a dataset by collecting videos of multiple dancers simultaneously dancing to K-pop music and dancing in various genres. Generating synchronous dances has two meanings: one is to generate a dance that goes well with the input music and dance when both are given, and the other is to simultaneously generate multiple dances that match the given music. We call them secondary dance generation and group dance generation, respectively, and designed the proposed model, which can perform both two generation methods. In addition, we would like to propose additional learning methods to make a model that better generates synchronous dances. To assess the performance of the proposed model, both qualitative and quantitative evaluations are conducted, proving the effectiveness and suitability of the proposed model when generating synchronous dances for K-pop music.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助leapper采纳,获得10
28秒前
38秒前
乐观怀亦发布了新的文献求助10
42秒前
1分钟前
leapper发布了新的文献求助10
1分钟前
领导范儿应助读书的时候采纳,获得10
1分钟前
GPTea应助科研通管家采纳,获得10
1分钟前
悠米爱吃图奇完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助读书的时候采纳,获得10
1分钟前
1分钟前
上官若男应助读书的时候采纳,获得10
2分钟前
传奇3应助读书的时候采纳,获得10
2分钟前
FashionBoy应助读书的时候采纳,获得10
2分钟前
bkagyin应助读书的时候采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
3分钟前
ding应助SiboN采纳,获得10
3分钟前
科研通AI6应助读书的时候采纳,获得10
3分钟前
科研通AI5应助读书的时候采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助读书的时候采纳,获得10
4分钟前
Ava应助读书的时候采纳,获得10
5分钟前
5分钟前
5分钟前
bkagyin应助读书的时候采纳,获得10
5分钟前
5分钟前
爱听歌笑寒完成签到,获得积分10
5分钟前
文欣完成签到 ,获得积分0
5分钟前
丘比特应助读书的时候采纳,获得10
5分钟前
5分钟前
lanxinge完成签到 ,获得积分10
6分钟前
情怀应助读书的时候采纳,获得10
6分钟前
木木夕给木木夕的求助进行了留言
6分钟前
Orange应助读书的时候采纳,获得10
6分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
科研通AI5应助读书的时候采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935471
求助须知:如何正确求助?哪些是违规求助? 4202851
关于积分的说明 13058914
捐赠科研通 3977994
什么是DOI,文献DOI怎么找? 2179642
邀请新用户注册赠送积分活动 1195676
关于科研通互助平台的介绍 1107453