Music-Driven Synchronous Dance Generation Considering K-Pop Musical and Choreographical Characteristics

舞蹈 计算机科学 音乐剧 编舞 多媒体 流行音乐 人工智能 语音识别 视觉艺术 艺术
作者
Seohyun Kim,Kyogu Lee
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 94152-94163
标识
DOI:10.1109/access.2024.3420433
摘要

Generating dance movements from music has been considered a highly challenging task, as it requires the model to comprehend concepts from two different modalities: audio and video. However, recently, research on dance generation based on deep learning has been actively conducted. Existing dance generation researches tend to focus on generating dances in limited genres or for single dancer, so when K-pop music that mixes multiple genres was applied to existing methods, they failed to generate dances of various genres or group dances. In this paper, we propose the K-pop dance generation model in an autoregressive manner, a system designed to generate two-person synchronous dances based on K-pop music. To achieve this, we created a dataset by collecting videos of multiple dancers simultaneously dancing to K-pop music and dancing in various genres. Generating synchronous dances has two meanings: one is to generate a dance that goes well with the input music and dance when both are given, and the other is to simultaneously generate multiple dances that match the given music. We call them secondary dance generation and group dance generation, respectively, and designed the proposed model, which can perform both two generation methods. In addition, we would like to propose additional learning methods to make a model that better generates synchronous dances. To assess the performance of the proposed model, both qualitative and quantitative evaluations are conducted, proving the effectiveness and suitability of the proposed model when generating synchronous dances for K-pop music.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝胖子plus完成签到,获得积分10
1秒前
共享精神应助自信鞯采纳,获得10
1秒前
星辰大海应助Lobectomy采纳,获得10
1秒前
1秒前
羽鸮完成签到,获得积分10
2秒前
聪慧黑米完成签到,获得积分20
2秒前
闾丘黎昕发布了新的文献求助10
2秒前
羽鸮发布了新的文献求助10
4秒前
findmoon完成签到,获得积分10
5秒前
7秒前
池暮江吟春完成签到,获得积分0
7秒前
嘎嘎发布了新的文献求助10
8秒前
香蕉觅云应助兜兜采纳,获得10
8秒前
称心的半邪完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
凡人完成签到,获得积分10
11秒前
sdfadf发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
罗实完成签到 ,获得积分10
16秒前
咕噜噜发布了新的文献求助10
16秒前
英姑应助鲤鱼寒荷采纳,获得10
17秒前
冬柳发布了新的文献求助10
17秒前
18秒前
吃不饱星球球长应助343434采纳,获得50
19秒前
大个应助fyl采纳,获得10
19秒前
19秒前
loulan发布了新的文献求助10
20秒前
21秒前
阳光少女完成签到 ,获得积分10
23秒前
时567完成签到,获得积分10
23秒前
小马甲应助Fei采纳,获得50
23秒前
xiangyuan发布了新的文献求助10
23秒前
Hello应助天才眼镜狗采纳,获得10
24秒前
24秒前
lvlei完成签到,获得积分20
24秒前
桐桐应助Lobectomy采纳,获得10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943