Energy efficient scheme for improving network lifetime using BAT algorithm in wireless sensor network

计算机科学 无线传感器网络 概率逻辑 初始化 节点(物理) 高效能源利用 无线传感器网络中的密钥分配 无线网络 算法 实时计算 计算机网络 无线 人工智能 电信 电气工程 工程类 程序设计语言 结构工程
作者
Shalu Saini,Manjeet Singh
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:37 (15) 被引量:1
标识
DOI:10.1002/dac.5889
摘要

Summary Wireless sensor networks consist of several autonomous nodes that are outfitted with sensors, radio, processors, memory storage, and power sources. These nodes track, sense, and send data using radio. While establishing a network, the two most essential characteristics are coverage and connectivity. For better connectivity and a longer network life, it's important to make the coverage area as big as possible with the fewest number of sensor nodes. The goal of this research is to make a connected sensor network that uses less energy and can be used in situations where the sensors need to be placed in the best way to make the network last as long as possible. The probabilistic sensing model is used, and improved network lifetime is the goal of the research work by using problem‐specific intelligent optimization techniques like BAT, ACO, and JOA to maximize the coverage area with respect to energy and points of interest. This work introduces a novel approach that optimizes both coverage and connectivity. The modified binary bat algorithm overcomes computational complexities and local optima observed in existing methods. Uniquely, it models the three states of each sensor node and includes innovative features like a greedy initialization and a weighted cost function for improving network efficiency. After investigation, it was analyzed that the proposed solution significantly improves network lifetime by over 10% to 12% compared to existing methods like JOA and ACO. The proposed approach converges faster and performs more efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净初雪发布了新的文献求助10
刚刚
goodbuhui发布了新的文献求助10
1秒前
嘿嘿应助小小威采纳,获得10
1秒前
饼饼完成签到,获得积分10
1秒前
DX完成签到,获得积分10
1秒前
1秒前
FashionBoy应助辛束采纳,获得10
2秒前
2秒前
土豆炖牛腩完成签到,获得积分20
2秒前
九歌发布了新的文献求助10
3秒前
3秒前
ss发布了新的文献求助10
3秒前
YDX发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
FashionBoy应助夏夏采纳,获得10
3秒前
卯一发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI6应助侯康采纳,获得10
5秒前
CC完成签到 ,获得积分10
6秒前
在下小李发布了新的文献求助10
6秒前
科研通AI6应助奔奔采纳,获得10
6秒前
00关注了科研通微信公众号
6秒前
Georges-09发布了新的文献求助10
7秒前
7秒前
情怀应助萧一采纳,获得10
7秒前
汉堡包应助My采纳,获得30
7秒前
Hello应助lf采纳,获得10
8秒前
8秒前
没有昵称发布了新的文献求助10
8秒前
海棠花完成签到,获得积分10
8秒前
歪比巴卜发布了新的文献求助20
8秒前
nihao发布了新的文献求助10
8秒前
大模型应助wuwuwu采纳,获得30
9秒前
Jeffery426完成签到,获得积分10
9秒前
9秒前
所所应助tianmafei采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625290
求助须知:如何正确求助?哪些是违规求助? 4711149
关于积分的说明 14954048
捐赠科研通 4779211
什么是DOI,文献DOI怎么找? 2553684
邀请新用户注册赠送积分活动 1515632
关于科研通互助平台的介绍 1475827