Energy efficient scheme for improving network lifetime using BAT algorithm in wireless sensor network

计算机科学 无线传感器网络 概率逻辑 初始化 节点(物理) 高效能源利用 无线传感器网络中的密钥分配 无线网络 算法 实时计算 计算机网络 无线 人工智能 电信 电气工程 结构工程 工程类 程序设计语言
作者
Shalu Saini,Manjeet Singh
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:37 (15) 被引量:1
标识
DOI:10.1002/dac.5889
摘要

Summary Wireless sensor networks consist of several autonomous nodes that are outfitted with sensors, radio, processors, memory storage, and power sources. These nodes track, sense, and send data using radio. While establishing a network, the two most essential characteristics are coverage and connectivity. For better connectivity and a longer network life, it's important to make the coverage area as big as possible with the fewest number of sensor nodes. The goal of this research is to make a connected sensor network that uses less energy and can be used in situations where the sensors need to be placed in the best way to make the network last as long as possible. The probabilistic sensing model is used, and improved network lifetime is the goal of the research work by using problem‐specific intelligent optimization techniques like BAT, ACO, and JOA to maximize the coverage area with respect to energy and points of interest. This work introduces a novel approach that optimizes both coverage and connectivity. The modified binary bat algorithm overcomes computational complexities and local optima observed in existing methods. Uniquely, it models the three states of each sensor node and includes innovative features like a greedy initialization and a weighted cost function for improving network efficiency. After investigation, it was analyzed that the proposed solution significantly improves network lifetime by over 10% to 12% compared to existing methods like JOA and ACO. The proposed approach converges faster and performs more efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cchen0902发布了新的文献求助10
1秒前
在水一方应助cmh采纳,获得10
1秒前
一年能吃800篇sci吗完成签到,获得积分10
1秒前
慕青应助ww采纳,获得10
1秒前
1秒前
1秒前
rosexu完成签到,获得积分10
2秒前
jhlz5879完成签到,获得积分10
2秒前
百宝发布了新的文献求助10
2秒前
Ye发布了新的文献求助10
2秒前
lalala应助搞怪网络采纳,获得20
3秒前
FashionBoy应助渝州人采纳,获得10
3秒前
3秒前
4秒前
4秒前
科研通AI5应助xy采纳,获得10
4秒前
曼冬发布了新的文献求助10
4秒前
上官若男应助sjxx采纳,获得10
4秒前
5秒前
守墓人完成签到 ,获得积分10
5秒前
榴莲完成签到,获得积分10
5秒前
对照完成签到 ,获得积分10
5秒前
6秒前
6秒前
初闻完成签到,获得积分10
7秒前
惠惠发布了新的文献求助10
7秒前
慕青应助a1oft采纳,获得10
8秒前
叶十七完成签到,获得积分10
8秒前
汉堡包应助宇_采纳,获得10
8秒前
SciGPT应助H71000A采纳,获得10
8秒前
侦察兵发布了新的文献求助10
9秒前
自然乐松关注了科研通微信公众号
9秒前
zqfxc完成签到,获得积分10
9秒前
sumeiling完成签到,获得积分20
9秒前
朴素的鸡完成签到,获得积分20
10秒前
大七发布了新的文献求助10
10秒前
zzzq完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794