亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy efficient scheme for improving network lifetime using BAT algorithm in wireless sensor network

计算机科学 无线传感器网络 概率逻辑 初始化 节点(物理) 高效能源利用 无线传感器网络中的密钥分配 无线网络 算法 实时计算 计算机网络 无线 人工智能 电信 电气工程 工程类 程序设计语言 结构工程
作者
Shalu Saini,Manjeet Singh
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:37 (15) 被引量:1
标识
DOI:10.1002/dac.5889
摘要

Summary Wireless sensor networks consist of several autonomous nodes that are outfitted with sensors, radio, processors, memory storage, and power sources. These nodes track, sense, and send data using radio. While establishing a network, the two most essential characteristics are coverage and connectivity. For better connectivity and a longer network life, it's important to make the coverage area as big as possible with the fewest number of sensor nodes. The goal of this research is to make a connected sensor network that uses less energy and can be used in situations where the sensors need to be placed in the best way to make the network last as long as possible. The probabilistic sensing model is used, and improved network lifetime is the goal of the research work by using problem‐specific intelligent optimization techniques like BAT, ACO, and JOA to maximize the coverage area with respect to energy and points of interest. This work introduces a novel approach that optimizes both coverage and connectivity. The modified binary bat algorithm overcomes computational complexities and local optima observed in existing methods. Uniquely, it models the three states of each sensor node and includes innovative features like a greedy initialization and a weighted cost function for improving network efficiency. After investigation, it was analyzed that the proposed solution significantly improves network lifetime by over 10% to 12% compared to existing methods like JOA and ACO. The proposed approach converges faster and performs more efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
平淡映秋发布了新的文献求助10
13秒前
focus完成签到 ,获得积分10
14秒前
香菜肉丸发布了新的文献求助10
17秒前
27秒前
36秒前
47秒前
57秒前
犬来八荒发布了新的文献求助10
57秒前
simple1完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Cherry发布了新的文献求助10
1分钟前
charih完成签到 ,获得积分10
1分钟前
1分钟前
CodeCraft应助犬来八荒采纳,获得10
1分钟前
1分钟前
1分钟前
ding应助小橘子吃傻子采纳,获得10
1分钟前
1分钟前
Tania完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
辉辉应助科研通管家采纳,获得10
3分钟前
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
wanci应助Tingshuo采纳,获得10
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091