Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment

计算机科学 动力学(音乐) 人工智能 机器学习 心理学 教育学
作者
Tran Van Quang,Dat Tien Doan,Geun Young Yun
出处
期刊:International Journal of Modelling and Simulation [Informa]
卷期号:: 1-27
标识
DOI:10.1080/02286203.2024.2371682
摘要

Indoor environmental quality is crucial for human health and comfort, necessitating precise and efficient computational methods to optimise indoor climate parameters. Recent advancements in machine learning (ML) and computational fluid dynamics (CFD) are promising. However, applying ML to complex building airflow presents challenges. This research aims to investigate the integration of ML with CFD in the context of built environment applications using a systematic review approach. It highlights a critical knowledge gap: the need to synthesise innovative approaches that address the limitations of indoor modelling using data-driven ML methods. The review examines contemporary literature, identifying current developments and suggesting potential future directions. It delves into the innovations in combining ML with CFD to predict thermal comfort and indoor air quality, uncovering key limitations such as the lack of high-quality experimental data for training and validation, the computational complexity of detailed CFD simulations, and the interpretability issues of 'black-box' ML models. The emergence of data-driven techniques in fluid mechanics offers promising prospects for modelling in the built environment. Future research should focus on incorporating physics-based rules in ML models, adapting turbulence closure models for indoor flows, and enhancing model validation using real-world datasets. The research emphasises the synergistic relationship between ML and CFD; it proposes pathways to overcome current limitations, aiming to enhance the precision and efficiency of indoor environment modelling through their integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
刚刚
首席医官完成签到,获得积分10
1秒前
坚定迎天完成签到,获得积分10
1秒前
Zzzoey发布了新的文献求助10
2秒前
搜集达人应助小罗飞飞飞采纳,获得10
2秒前
詹卫卫完成签到 ,获得积分10
2秒前
2秒前
宇_发布了新的文献求助20
2秒前
3秒前
esdeath发布了新的文献求助10
3秒前
云轩完成签到,获得积分10
3秒前
3秒前
3秒前
自然乐松发布了新的文献求助10
3秒前
yesir完成签到,获得积分10
4秒前
普雅花的等待完成签到,获得积分10
4秒前
想人陪的以云完成签到,获得积分10
5秒前
科研通AI5应助德德采纳,获得10
5秒前
NexusExplorer应助李来仪采纳,获得10
5秒前
威康宇宙发布了新的文献求助10
5秒前
小蘑菇应助润润轩轩采纳,获得10
5秒前
6秒前
6秒前
个性尔槐发布了新的文献求助10
6秒前
xiangxl完成签到,获得积分10
6秒前
fang完成签到 ,获得积分10
7秒前
汉堡包应助zhui采纳,获得10
7秒前
7秒前
万万完成签到,获得积分10
7秒前
sci完成签到,获得积分10
8秒前
8秒前
科研通AI5应助马静雨采纳,获得50
8秒前
Lucas应助酷炫板凳采纳,获得10
8秒前
8秒前
FFFFFFG完成签到,获得积分10
9秒前
完美世界应助0000采纳,获得30
10秒前
rosexu发布了新的文献求助10
10秒前
爆米花应助sv采纳,获得10
10秒前
10秒前
搞怪网络完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794