Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment

计算机科学 动力学(音乐) 人工智能 机器学习 心理学 教育学
作者
Tran Van Quang,Dat Tien Doan,Geun Young Yun
出处
期刊:International Journal of Modelling and Simulation [Informa]
卷期号:: 1-27
标识
DOI:10.1080/02286203.2024.2371682
摘要

Indoor environmental quality is crucial for human health and comfort, necessitating precise and efficient computational methods to optimise indoor climate parameters. Recent advancements in machine learning (ML) and computational fluid dynamics (CFD) are promising. However, applying ML to complex building airflow presents challenges. This research aims to investigate the integration of ML with CFD in the context of built environment applications using a systematic review approach. It highlights a critical knowledge gap: the need to synthesise innovative approaches that address the limitations of indoor modelling using data-driven ML methods. The review examines contemporary literature, identifying current developments and suggesting potential future directions. It delves into the innovations in combining ML with CFD to predict thermal comfort and indoor air quality, uncovering key limitations such as the lack of high-quality experimental data for training and validation, the computational complexity of detailed CFD simulations, and the interpretability issues of 'black-box' ML models. The emergence of data-driven techniques in fluid mechanics offers promising prospects for modelling in the built environment. Future research should focus on incorporating physics-based rules in ML models, adapting turbulence closure models for indoor flows, and enhancing model validation using real-world datasets. The research emphasises the synergistic relationship between ML and CFD; it proposes pathways to overcome current limitations, aiming to enhance the precision and efficiency of indoor environment modelling through their integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果衫应助腼腆的斓采纳,获得10
刚刚
hh完成签到,获得积分10
刚刚
刚刚
fff发布了新的文献求助10
1秒前
1秒前
万能图书馆应助科研人采纳,获得10
1秒前
orixero应助超级白昼采纳,获得10
2秒前
深情安青应助Dr_Yu采纳,获得10
2秒前
3秒前
孤独的面包完成签到,获得积分20
3秒前
4秒前
之遥发布了新的文献求助10
4秒前
4秒前
可乐加冰完成签到 ,获得积分10
4秒前
yangyanhao完成签到,获得积分20
4秒前
5秒前
乐乐应助迅速白开水采纳,获得10
5秒前
5秒前
我是老大应助Clary采纳,获得10
5秒前
6秒前
hh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
savior完成签到,获得积分10
8秒前
zzzzzaaw发布了新的文献求助10
8秒前
jike发布了新的文献求助10
8秒前
带头大哥应助青塘龙仔采纳,获得10
8秒前
CipherSage应助青塘龙仔采纳,获得10
8秒前
8秒前
orixero应助青塘龙仔采纳,获得10
8秒前
桐桐应助青塘龙仔采纳,获得10
8秒前
sugkook完成签到,获得积分10
9秒前
善学以致用应助青塘龙仔采纳,获得10
9秒前
小蘑菇应助青塘龙仔采纳,获得10
9秒前
杨星杰发布了新的文献求助10
9秒前
浮浮世世发布了新的文献求助30
9秒前
9秒前
喵咪西西完成签到,获得积分10
10秒前
靓丽瓦驴发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769194
求助须知:如何正确求助?哪些是违规求助? 5578685
关于积分的说明 15420721
捐赠科研通 4902899
什么是DOI,文献DOI怎么找? 2637981
邀请新用户注册赠送积分活动 1585894
关于科研通互助平台的介绍 1541018