Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment

计算机科学 动力学(音乐) 人工智能 机器学习 心理学 教育学
作者
Tran Van Quang,Dat Tien Doan,Geun Young Yun
出处
期刊:International Journal of Modelling and Simulation [Taylor & Francis]
卷期号:: 1-27
标识
DOI:10.1080/02286203.2024.2371682
摘要

Indoor environmental quality is crucial for human health and comfort, necessitating precise and efficient computational methods to optimise indoor climate parameters. Recent advancements in machine learning (ML) and computational fluid dynamics (CFD) are promising. However, applying ML to complex building airflow presents challenges. This research aims to investigate the integration of ML with CFD in the context of built environment applications using a systematic review approach. It highlights a critical knowledge gap: the need to synthesise innovative approaches that address the limitations of indoor modelling using data-driven ML methods. The review examines contemporary literature, identifying current developments and suggesting potential future directions. It delves into the innovations in combining ML with CFD to predict thermal comfort and indoor air quality, uncovering key limitations such as the lack of high-quality experimental data for training and validation, the computational complexity of detailed CFD simulations, and the interpretability issues of 'black-box' ML models. The emergence of data-driven techniques in fluid mechanics offers promising prospects for modelling in the built environment. Future research should focus on incorporating physics-based rules in ML models, adapting turbulence closure models for indoor flows, and enhancing model validation using real-world datasets. The research emphasises the synergistic relationship between ML and CFD; it proposes pathways to overcome current limitations, aiming to enhance the precision and efficiency of indoor environment modelling through their integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理萃完成签到 ,获得积分10
刚刚
苏黎世发布了新的文献求助10
刚刚
1秒前
乔安发布了新的文献求助10
1秒前
炫哥IRIS发布了新的文献求助10
1秒前
LaTeXer给积极行天的求助进行了留言
2秒前
ww发布了新的文献求助10
2秒前
Carlo完成签到,获得积分10
3秒前
蓝胖子完成签到 ,获得积分10
4秒前
5秒前
终生科研徒刑完成签到 ,获得积分10
5秒前
6秒前
ysc发布了新的文献求助20
8秒前
9秒前
LKX完成签到 ,获得积分10
9秒前
纯真的诗兰完成签到,获得积分10
10秒前
自然函完成签到 ,获得积分10
10秒前
等一个晴天完成签到,获得积分10
11秒前
as发布了新的文献求助100
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
个性元枫应助科研通管家采纳,获得10
11秒前
kingwill应助科研通管家采纳,获得20
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
11秒前
慕青应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
12秒前
海东来应助科研通管家采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
个性元枫应助科研通管家采纳,获得10
12秒前
茕凡桃七完成签到,获得积分10
12秒前
大个应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得30
12秒前
12秒前
烟花应助科研通管家采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048