Recent advances and effectiveness of machine learning models for fluid dynamics in the built environment

计算机科学 动力学(音乐) 人工智能 机器学习 心理学 教育学
作者
Tran Van Quang,Dat Tien Doan,Geun Young Yun
出处
期刊:International Journal of Modelling and Simulation [Informa]
卷期号:: 1-27
标识
DOI:10.1080/02286203.2024.2371682
摘要

Indoor environmental quality is crucial for human health and comfort, necessitating precise and efficient computational methods to optimise indoor climate parameters. Recent advancements in machine learning (ML) and computational fluid dynamics (CFD) are promising. However, applying ML to complex building airflow presents challenges. This research aims to investigate the integration of ML with CFD in the context of built environment applications using a systematic review approach. It highlights a critical knowledge gap: the need to synthesise innovative approaches that address the limitations of indoor modelling using data-driven ML methods. The review examines contemporary literature, identifying current developments and suggesting potential future directions. It delves into the innovations in combining ML with CFD to predict thermal comfort and indoor air quality, uncovering key limitations such as the lack of high-quality experimental data for training and validation, the computational complexity of detailed CFD simulations, and the interpretability issues of 'black-box' ML models. The emergence of data-driven techniques in fluid mechanics offers promising prospects for modelling in the built environment. Future research should focus on incorporating physics-based rules in ML models, adapting turbulence closure models for indoor flows, and enhancing model validation using real-world datasets. The research emphasises the synergistic relationship between ML and CFD; it proposes pathways to overcome current limitations, aiming to enhance the precision and efficiency of indoor environment modelling through their integration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谦让的书易完成签到,获得积分10
1秒前
1秒前
weiwei发布了新的文献求助30
1秒前
机灵筮完成签到,获得积分10
1秒前
东方元语应助科研通管家采纳,获得20
2秒前
嘞是举仔应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得30
2秒前
赘婿应助蓝天采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI6应助蓝天采纳,获得10
2秒前
研友_VZG7GZ应助鲁欢采纳,获得10
2秒前
吕凯迪应助科研通管家采纳,获得10
2秒前
科研通AI6应助蓝天采纳,获得10
2秒前
tiptip应助蓝天采纳,获得10
2秒前
科研通AI6应助蓝天采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得20
3秒前
Wind应助蓝天采纳,获得10
3秒前
完美世界应助蓝天采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
小马甲应助蓝天采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Wind应助蓝天采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
科研通AI6应助蓝天采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
东方元语应助科研通管家采纳,获得20
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027