Design of Linear-Polymer-Coated Graphene Nanosheets with π-Conjugated Structure and Multi-Active-Center for Long-Lifespan and High-Rate Li-Storage Performance

材料科学 石墨烯 共轭体系 纳米技术 聚合物 中心(范畴论) 化学工程 复合材料 结晶学 化学 工程类
作者
Quanwei Ma,Mengge Cao,Zhenli Fu,Rui Wang,Peng Xiong,Kang Hua,Longhai Zhang,Tengfei Zhou,Hongbao Li,Chaofeng Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (27): 35033-35042
标识
DOI:10.1021/acsami.4c05191
摘要

Organic material holds immense potential for Li-ion batteries (LIBs) due to their eco-friendly nature, high structural designability, abundant sources, and high theoretical capacity. However, the limited redox-active sites, low electronic conductivity, sluggish ionic diffusion, and high solubility hinder their practical application. Here, we reported the use of a linear polymer called poly(naphthalenetetracarboxylic dianhydride-pyrene-4,5,9,10-tetraone)-coated graphene nanosheets (NPT/rGO) as a cathode material for LIBs. The NPT polymer has a rotation angle of approximately 63° between each plane, which helps in exposing the active sites and preventing structural pulverization during cycling. The highly conjugated skeleton of the polymer, along with graphene, forms a synergistic effect through a π–π interaction. This combination enhances the conductivity and restricts solubility. Additionally, the linear structure of NPT and the two-dimensional rGO substrates work together to enhance charge transfer and ion diffusion rates, resulting in faster reaction kinetics. Consequently, NPT/rGO exhibits excellent electrochemical performance in terms of high capacity, superior cyclic stability, and good rate capability for LIBs. Moreover, through the combination of experimental investigations and theoretical simulations, a multiple electron reaction mechanism, an efficient Li-ion storage behavior, and a reversible dynamic evolution have been revealed. This study introduces a rational molecular design approach to enhance the electrochemical performance of polyimide derivatives, thereby contributing to the advancement of cutting-edge organic electrode materials for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小洋人发布了新的文献求助10
1秒前
喝前姚一摇关注了科研通微信公众号
1秒前
自由香魔完成签到,获得积分10
2秒前
糯米糍发布了新的文献求助10
6秒前
13秒前
孤独振家完成签到,获得积分20
14秒前
糯米糍完成签到,获得积分10
15秒前
gu发布了新的文献求助10
18秒前
自觉远山完成签到 ,获得积分10
21秒前
23秒前
23秒前
果ghj完成签到,获得积分10
26秒前
ding应助佟韩采纳,获得10
26秒前
好想夏天发布了新的文献求助10
29秒前
果ghj发布了新的文献求助10
30秒前
张世奇发布了新的文献求助10
32秒前
35秒前
36秒前
阿东c完成签到 ,获得积分10
37秒前
天天快乐应助玄音采纳,获得10
38秒前
孟子豪发布了新的文献求助10
42秒前
yrh发布了新的文献求助10
43秒前
Owen应助zyfqpc采纳,获得20
46秒前
小苹果完成签到,获得积分10
46秒前
50秒前
XD发布了新的文献求助10
55秒前
56秒前
56秒前
ronin完成签到,获得积分10
56秒前
57秒前
58秒前
雨的诉说发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
玄音发布了新的文献求助10
1分钟前
gu发布了新的文献求助20
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290