Design of Linear-Polymer-Coated Graphene Nanosheets with π-Conjugated Structure and Multi-Active-Center for Long-Lifespan and High-Rate Li-Storage Performance

材料科学 石墨烯 共轭体系 纳米技术 聚合物 中心(范畴论) 化学工程 复合材料 结晶学 化学 工程类
作者
Quanwei Ma,Mengge Cao,Zhenli Fu,Yuemei Li,Peng Xiong,Kang Hua,Longhai Zhang,Tengfei Zhou,Hongbao Li,Chaofeng Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (27): 35033-35042
标识
DOI:10.1021/acsami.4c05191
摘要

Organic material holds immense potential for Li-ion batteries (LIBs) due to their eco-friendly nature, high structural designability, abundant sources, and high theoretical capacity. However, the limited redox-active sites, low electronic conductivity, sluggish ionic diffusion, and high solubility hinder their practical application. Here, we reported the use of a linear polymer called poly(naphthalenetetracarboxylic dianhydride-pyrene-4,5,9,10-tetraone)-coated graphene nanosheets (NPT/rGO) as a cathode material for LIBs. The NPT polymer has a rotation angle of approximately 63° between each plane, which helps in exposing the active sites and preventing structural pulverization during cycling. The highly conjugated skeleton of the polymer, along with graphene, forms a synergistic effect through a π–π interaction. This combination enhances the conductivity and restricts solubility. Additionally, the linear structure of NPT and the two-dimensional rGO substrates work together to enhance charge transfer and ion diffusion rates, resulting in faster reaction kinetics. Consequently, NPT/rGO exhibits excellent electrochemical performance in terms of high capacity, superior cyclic stability, and good rate capability for LIBs. Moreover, through the combination of experimental investigations and theoretical simulations, a multiple electron reaction mechanism, an efficient Li-ion storage behavior, and a reversible dynamic evolution have been revealed. This study introduces a rational molecular design approach to enhance the electrochemical performance of polyimide derivatives, thereby contributing to the advancement of cutting-edge organic electrode materials for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马马马发布了新的文献求助10
1秒前
辰月贰拾发布了新的文献求助10
1秒前
wo完成签到,获得积分10
2秒前
松柏完成签到 ,获得积分10
2秒前
星星应助一步一步0617采纳,获得10
2秒前
3秒前
cccc发布了新的文献求助10
3秒前
王闪闪完成签到,获得积分10
3秒前
4秒前
Hover完成签到 ,获得积分10
5秒前
充电宝应助文静采纳,获得10
6秒前
Zhou发布了新的文献求助10
7秒前
lzc完成签到 ,获得积分10
7秒前
Yuki完成签到,获得积分10
8秒前
tooty发布了新的文献求助10
8秒前
9秒前
稳重元冬发布了新的文献求助10
10秒前
AAA111122完成签到,获得积分10
10秒前
猫头兔搞科研完成签到,获得积分10
10秒前
思源应助吃西瓜的小胖猪采纳,获得10
12秒前
斯文败类应助木刻青、采纳,获得30
13秒前
奋斗的凌青完成签到,获得积分10
14秒前
15秒前
16秒前
从容芮应助yygz0703采纳,获得10
17秒前
17秒前
飞飞飞123完成签到,获得积分10
18秒前
hehe发布了新的文献求助10
18秒前
Cala洛~完成签到 ,获得积分10
19秒前
重要山彤完成签到 ,获得积分10
22秒前
22秒前
22秒前
文静发布了新的文献求助10
23秒前
甜甜秋荷发布了新的文献求助10
23秒前
24秒前
辰月贰拾完成签到,获得积分10
25秒前
海鸟和鱼发布了新的文献求助10
26秒前
阿悦完成签到 ,获得积分10
26秒前
Hello应助超级mxl采纳,获得10
26秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998259
求助须知:如何正确求助?哪些是违规求助? 2658819
关于积分的说明 7197938
捐赠科研通 2294325
什么是DOI,文献DOI怎么找? 1216550
科研通“疑难数据库(出版商)”最低求助积分说明 593547
版权声明 592904