LinkGuard: Link Locally Privacy-Preserving Graph Neural Networks with Integrated Denoising and Private Learning

计算机科学 链接(几何体) 降噪 人工神经网络 差别隐私 人工智能 计算机网络 数据挖掘
作者
Yuxin Qi,Xi Lin,Ziyao Liu,Gaolei Li,Jingyu Wang,Jianhua Li
标识
DOI:10.1145/3589335.3651533
摘要

Recent studies have introduced privacy-preserving graph neural networks to safeguard the privacy of sensitive link information in graphs. However, existing link protection mechanisms in GNNs, particularly over decentralized nodes, struggle to strike an optimal balance between privacy and utility. We argue that a pivotal issue is the separation of noisy topology denoising and GNN private learning into distinct phases at the server side, leading to an under-denoising problem in the noisy topology. To address this, we propose a dynamic, adaptive Link LDP framework that performs noisy topology denoising on the server side in a dynamic manner. This approach aims to mitigate the impact of local noise on the GNN training process, reducing the uncertainty introduced by local noise. Furthermore, we integrate the noise generation and private training processes across all existing Link LDP GNNs into a unified framework. Experimental results demonstrate that our method surpasses existing approaches, obtaining around a 7% performance improvement under strong privacy strength and achieving a better trade-off between utility and privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助247793325采纳,获得20
1秒前
1秒前
灵巧荆发布了新的文献求助10
1秒前
1秒前
haimianbaobao完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
SAW发布了新的文献求助10
4秒前
爆米花应助LiShin采纳,获得10
4秒前
Jasper应助jxcandice采纳,获得10
5秒前
5秒前
Owen应助雾见春采纳,获得10
6秒前
aiming发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
无辜之卉发布了新的文献求助10
8秒前
yty发布了新的文献求助10
8秒前
烟花应助卡夫卡没在海边采纳,获得10
9秒前
456发布了新的文献求助10
10秒前
传奇3应助温暖以蓝采纳,获得10
10秒前
辛勤的仰完成签到,获得积分10
10秒前
如意新晴完成签到,获得积分10
10秒前
10秒前
zrk完成签到,获得积分20
11秒前
11秒前
szmsnail发布了新的文献求助20
11秒前
Ava应助Monik采纳,获得10
11秒前
打打应助zhui采纳,获得10
12秒前
12秒前
中华有为发布了新的文献求助10
13秒前
yana完成签到,获得积分10
13秒前
科目三应助卡卡采纳,获得10
13秒前
14秒前
XHZGG完成签到 ,获得积分10
15秒前
aiming完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794