EAGNet: A method for automatic extraction of agricultural greenhouses from high spatial resolution remote sensing images based on hybrid multi-attention

萃取(化学) 温室 遥感 计算机科学 人工智能 农业工程 计算机视觉 分割 块(置换群论) 相似性(几何) 农业 工程类 数学 地理 农学 图像(数学) 色谱法 生物 几何学 考古 化学
作者
Hongzhou Li,Yuhang Gan,Yujie Wu,Li Guo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:202: 107431-107431 被引量:9
标识
DOI:10.1016/j.compag.2022.107431
摘要

The timely and accurate acquisition of greenhouse information is crucial for strategically planning modern agriculture. However, existing methods are affected by the close spacing between agricultural greenhouses, intra-class diversity, and inter-class similarity, resulting in missed and incorrect extraction phenomena. Here, we propose a model for agricultural greenhouse extraction (i.e., EAGNet), which includes a residual block improvement module (RBIM) and boundary segmentation module (BSM) that solve the problem of densely distributed agricultural greenhouse-boundary adhesion. We constructed a class attention module (CAM) to address the leakage extraction phenomenon in agricultural greenhouses caused by intra-class diversity and introduced an object contextual representation module (OCRM) to address the incorrect extraction of agricultural greenhouses caused by the similarity between classes. Experiments on a self-made agricultural greenhouse dataset showed that EAGNet achieved the best extraction results among all compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BareBear应助rosa采纳,获得10
刚刚
沉默凡桃发布了新的文献求助10
1秒前
Orange应助9℃采纳,获得10
1秒前
1秒前
一只橘子完成签到 ,获得积分10
1秒前
2秒前
韭黄发布了新的文献求助10
2秒前
西瓜发布了新的文献求助10
2秒前
Ll发布了新的文献求助10
2秒前
2秒前
wcy关注了科研通微信公众号
2秒前
3秒前
3秒前
CipherSage应助爱喝冰可乐采纳,获得10
4秒前
4秒前
bdvdsrwteges完成签到,获得积分10
4秒前
鱼雷完成签到,获得积分10
5秒前
5秒前
天天快乐应助喜洋洋采纳,获得10
5秒前
PANSIXUAN完成签到 ,获得积分10
6秒前
善良香岚发布了新的文献求助10
6秒前
6秒前
huizi完成签到,获得积分20
6秒前
RichardZ完成签到,获得积分10
6秒前
6秒前
左左发布了新的文献求助10
7秒前
执着的怜寒应助哈哈哈haha采纳,获得40
7秒前
Cassie完成签到 ,获得积分10
8秒前
8秒前
雄i完成签到,获得积分10
8秒前
Chenly完成签到,获得积分10
9秒前
科目三应助韭黄采纳,获得10
9秒前
9秒前
轻松笙发布了新的文献求助10
9秒前
11秒前
11秒前
a1oft发布了新的文献求助10
12秒前
觅桃乌龙完成签到,获得积分10
12秒前
13秒前
melodyezi发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759