协议(科学)
计算机科学
计算生物学
乙酰化
焊剂(冶金)
机器学习
人工智能
化学
生物
生物化学
基因
医学
病理
有机化学
替代医学
作者
Kirk Smith,Nicole Rhoads,Sriram Chandrasekaran
出处
期刊:STAR protocols
[Elsevier]
日期:2022-12-01
卷期号:3 (4): 101799-101799
标识
DOI:10.1016/j.xpro.2022.101799
摘要
This protocol describes CAROM, a computational tool that combines genome-scale metabolic networks (GEMs) and machine learning to identify enzyme targets of post-translational modifications (PTMs). Condition-specific enzyme and reaction properties are used to predict targets of phosphorylation and acetylation in multiple organisms. CAROM is influenced by the accuracy of GEMs and associated flux-balance analysis (FBA), which generate the inputs of the model. We demonstrate the protocol using multi-omics data from E. coli. For complete details on the use and execution of this protocol, please refer to Smith et al. (2022).
科研通智能强力驱动
Strongly Powered by AbleSci AI