A survey: object detection methods from CNN to transformer

计算机科学 变压器 目标检测 卷积神经网络 人工智能 领域(数学) 机器学习 模式识别(心理学) 数学 量子力学 物理 电压 纯数学
作者
Ershat Arkin,Nurbiya Yadikar,Xuebin Xu,Alimjan Aysa,Kurban Ubul
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:82 (14): 21353-21383 被引量:11
标识
DOI:10.1007/s11042-022-13801-3
摘要

Abstract Object detection is the most important problem in computer vision tasks. After AlexNet proposed, based on Convolutional Neural Network (CNN) methods have become mainstream in the computer vision field, many researches on neural networks and different transformations of algorithm structures have appeared. In order to achieve fast and accurate detection effects, it is necessary to jump out of the existing CNN framework and has great challenges. Transformer’s relatively mature theoretical support and technological development in the field of Natural Language Processing have brought it into the researcher’s sight, and it has been proved that Transformer’s method can be used for computer vision tasks, and proved that it exceeds the existing CNN method in some tasks. In order to enable more researchers to better understand the development process of object detection methods, existing methods, different frameworks, challenging problems and development trends, paper introduced historical classic methods of object detection used CNN, discusses the highlights, advantages and disadvantages of these algorithms. By consulting a large amount of paper, the paper compared different CNN detection methods and Transformer detection methods. Vertically under fair conditions, 13 different detection methods that have a broad impact on the field and are the most mainstream and promising are selected for comparison. The comparative data gives us confidence in the development of Transformer and the convergence between different methods. It also presents the recent innovative approaches to using Transformer in computer vision tasks. In the end, the challenges, opportunities and future prospects of this field are summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hereiswby完成签到,获得积分10
1秒前
Hello应助甜崽采纳,获得50
2秒前
kyf完成签到,获得积分10
5秒前
8秒前
8秒前
墩墩完成签到,获得积分10
8秒前
思源应助晓森采纳,获得10
9秒前
13秒前
Ash发布了新的文献求助10
14秒前
yyauthor发布了新的文献求助10
14秒前
Rita发布了新的文献求助10
14秒前
科研小白发布了新的文献求助10
16秒前
18秒前
调研昵称发布了新的文献求助10
24秒前
24秒前
Ash完成签到,获得积分10
24秒前
24秒前
一条迷人的咸鱼干完成签到 ,获得积分10
27秒前
乔威完成签到,获得积分10
32秒前
orixero应助MrZ采纳,获得10
33秒前
依然小爽完成签到 ,获得积分10
34秒前
34秒前
拜拜拜仁发布了新的文献求助10
37秒前
38秒前
minima1998完成签到,获得积分20
40秒前
40秒前
40秒前
安生发布了新的文献求助10
43秒前
溏心蛋发布了新的文献求助10
43秒前
minima1998发布了新的文献求助10
45秒前
haha发布了新的文献求助10
47秒前
陈曦完成签到,获得积分10
47秒前
天天快乐应助天天看文献采纳,获得10
48秒前
溏心蛋完成签到,获得积分10
48秒前
51秒前
52秒前
52秒前
科研通AI2S应助33采纳,获得10
54秒前
众生平等完成签到,获得积分10
55秒前
甜崽发布了新的文献求助50
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870