振动
流固耦合
材料科学
结构工程
声学
物理
有限元法
工程类
作者
Zhen-hao Lin,Cong-wei Hou,Liang Zhang,An-qi Guan,Zhi-jiang Jin,Jin-yuan Qian
标识
DOI:10.1016/j.anucene.2022.109579
摘要
• Flow dynamics and vibration of valve under different openings is analyzed. • Vibration mechanism of valve is figured out from perspective of flow force. • Total vibration level is adopted to characterize vibration intensity of core and stem. As a key device affecting the safety and economy of the pipeline system of nuclear power plants, the control valve regulates the medium pressure and flow rate. In this paper, taking the sleeve control valve as the research object, lift coefficient of flow field and vibration analysis of valve stem and plug are conducted with fluid–structure interaction (FSI) method to investigate the vibration characteristics of the sleeve control valve. The results show that the vortex moves downward and the intensity decreases with the rising of valve opening. The dominant frequency of vortex shedding occurs around 449 Hz. The lift coefficient C L is maximum at small valve opening. C L reaches about 2400 at L min-op , while C L is about 850 at L max-op . On M1 of stem, the total vibration level decreases with the rising of the valve opening, increasing by 4 % and 3 % on the Y -axis and Z -axis respectively. On M2 of plug, the total vibration level decreases with the decrease of the valve opening, and the total vibration level is down nearly 7.5 % on the X -axis. With the rising of the valve opening, the total vibration level difference between M1 and M2 is increasing, which reach 25.47 dB and 8.48 dB on the X -axis and Z -axis respectively. This work provides a certain reference value for the research on vibration reduction and noise reduction of sleeve control valves.
科研通智能强力驱动
Strongly Powered by AbleSci AI