A Lightweight Segmented Attention Network for Sleep Staging by Fusing Local Characteristics and Adjacent Information

计算机科学 残余物 循环神经网络 睡眠(系统调用) 人工智能 深度学习 块(置换群论) 特征提取 编码器 模式识别(心理学) 睡眠阶段 人工神经网络 特征(语言学) 脑电图 多导睡眠图 算法 医学 数学 哲学 精神科 操作系统 语言学 几何学
作者
Wei Zhou,Hangyu Zhu,Ning Shen,Hongyu Chen,Cong Fu,Huan Yu,Feng Shu,Chen Chen,Wei Chen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 238-247 被引量:20
标识
DOI:10.1109/tnsre.2022.3220372
摘要

Sleep staging is the essential step in sleep quality assessment and sleep disorders diagnosis. However, most current automatic sleep staging approaches use recurrent neural networks (RNN), resulting in a relatively large training burden. Moreover, these methods only extract information of the whole epoch or adjacent epochs, ignoring the local signal variations within epoch. To address these issues, a novel deep learning architecture named segmented attention network (SAN) is proposed in this paper. The architecture can be divided into feature extraction (FE) and time sequence encoder (TSE). The FE module consists of multiple multiscale CNN (MMCNN) and residual squeeze and excitation block (SE block). The former extracts features from multiple equal-length EEG segments and the latter reinforced the features. The TSE module based on a multi-head attention mechanism could capture the temporal information in the features extracted by FE module. Noteworthy, in SAN, we replaced the RNN module with a TSE module for temporal learning and made the network faster. The evaluation of the model was performed on two widely used public datasets, Montreal Archive of Sleep Studies (MASS) and Sleep-EDFX, and one clinical dataset from Huashan Hospital of Fudan University, Shanghai, China (HSFU). The proposed model achieved the accuracy of 85.5%, 86.4%, 82.5% on Sleep-EDFX, MASS and HSFU, respectively. The experimental results exhibited favorable performance and consistent improvements of SAN on different datasets in comparison with the state-of-the-art studies. It also proved the necessity of sleep staging by integrating the local characteristics within epochs and adjacent informative features among epochs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bobo完成签到,获得积分10
刚刚
1秒前
oqura完成签到 ,获得积分10
2秒前
amazeman111发布了新的文献求助10
2秒前
4秒前
5秒前
滕隐发布了新的文献求助10
6秒前
追风完成签到,获得积分10
6秒前
迅速傲晴完成签到,获得积分10
6秒前
7秒前
chinaproteome发布了新的文献求助10
8秒前
9秒前
汉堡包应助焉知非褔采纳,获得10
9秒前
10秒前
10秒前
大樗完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
浪子应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
浪子应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得30
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
Jasper应助默默冬瓜采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736699
求助须知:如何正确求助?哪些是违规求助? 5367371
关于积分的说明 15333576
捐赠科研通 4880461
什么是DOI,文献DOI怎么找? 2622875
邀请新用户注册赠送积分活动 1571758
关于科研通互助平台的介绍 1528582