A Lightweight Segmented Attention Network for Sleep Staging by Fusing Local Characteristics and Adjacent Information

计算机科学 残余物 循环神经网络 睡眠(系统调用) 人工智能 深度学习 块(置换群论) 特征提取 编码器 模式识别(心理学) 睡眠阶段 人工神经网络 特征(语言学) 脑电图 多导睡眠图 算法 医学 数学 语言学 哲学 几何学 精神科 操作系统
作者
Wei Zhou,Hangyu Zhu,Ning Shen,Hongyu Chen,Cong Fu,Huan Yu,Feng Shu,Chen Chen,Wei Chen
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:31: 238-247 被引量:11
标识
DOI:10.1109/tnsre.2022.3220372
摘要

Sleep staging is the essential step in sleep quality assessment and sleep disorders diagnosis. However, most current automatic sleep staging approaches use recurrent neural networks (RNN), resulting in a relatively large training burden. Moreover, these methods only extract information of the whole epoch or adjacent epochs, ignoring the local signal variations within epoch. To address these issues, a novel deep learning architecture named segmented attention network (SAN) is proposed in this paper. The architecture can be divided into feature extraction (FE) and time sequence encoder (TSE). The FE module consists of multiple multiscale CNN (MMCNN) and residual squeeze and excitation block (SE block). The former extracts features from multiple equal-length EEG segments and the latter reinforced the features. The TSE module based on a multi-head attention mechanism could capture the temporal information in the features extracted by FE module. Noteworthy, in SAN, we replaced the RNN module with a TSE module for temporal learning and made the network faster. The evaluation of the model was performed on two widely used public datasets, Montreal Archive of Sleep Studies (MASS) and Sleep-EDFX, and one clinical dataset from Huashan Hospital of Fudan University, Shanghai, China (HSFU). The proposed model achieved the accuracy of 85.5%, 86.4%, 82.5% on Sleep-EDFX, MASS and HSFU, respectively. The experimental results exhibited favorable performance and consistent improvements of SAN on different datasets in comparison with the state-of-the-art studies. It also proved the necessity of sleep staging by integrating the local characteristics within epochs and adjacent informative features among epochs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助蛋挞采纳,获得10
刚刚
77发布了新的文献求助10
1秒前
科研通AI2S应助wrng采纳,获得10
1秒前
忆茶戏完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
愤怒的之玉完成签到 ,获得积分10
4秒前
wanci应助迷路的沛蓝采纳,获得10
5秒前
hggyt发布了新的文献求助10
6秒前
皮卡丘完成签到 ,获得积分10
6秒前
哈哈哈66发布了新的文献求助10
12秒前
李爱国应助勤奋的从菡采纳,获得30
12秒前
大白完成签到,获得积分10
14秒前
16秒前
Bagpipe完成签到,获得积分10
16秒前
hdc12138完成签到,获得积分10
16秒前
上进生完成签到,获得积分10
20秒前
20秒前
研友_Z60x5L完成签到 ,获得积分0
20秒前
Muya发布了新的文献求助10
21秒前
24秒前
hggyt发布了新的文献求助10
24秒前
24秒前
孙文远完成签到,获得积分10
26秒前
上进生发布了新的文献求助10
26秒前
顺利研兔子完成签到,获得积分20
26秒前
xiaoyi发布了新的文献求助10
27秒前
阿鑫发布了新的文献求助10
28秒前
贪玩的友灵完成签到,获得积分20
31秒前
李健的小迷弟应助xiaoyi采纳,获得10
34秒前
Lucas应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
科目三应助科研通管家采纳,获得10
34秒前
酷波er应助科研通管家采纳,获得10
35秒前
35秒前
麦麦脆汁鸡完成签到,获得积分10
35秒前
35秒前
wu完成签到,获得积分20
35秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239638
求助须知:如何正确求助?哪些是违规求助? 2884892
关于积分的说明 8235695
捐赠科研通 2553051
什么是DOI,文献DOI怎么找? 1381288
科研通“疑难数据库(出版商)”最低求助积分说明 649225
邀请新用户注册赠送积分活动 624914