Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation

全息术 自编码 计算机科学 传感器 角谱法 迭代重建 深度学习 人工智能 声学 光学 物理 衍射
作者
Moon Hwan Lee,Hah Min Lew,Sangyeon Youn,Tae Kim,Jae Youn Hwang
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:69 (12): 3353-3366 被引量:16
标识
DOI:10.1109/tuffc.2022.3219401
摘要

Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorithms show limited performance in the fast and accurate generation of acoustic holograms, thus hindering the development of novel applications. We here propose a deep learning-based framework to achieve fast and accurate acoustic hologram generation. The framework has an autoencoder-like architecture; thus, the unsupervised training is realized without any ground truth. For the framework, we demonstrate a newly developed hologram generator network, the holographic ultrasound generation network (HU-Net), which is suitable for unsupervised learning of hologram generation, and a novel loss function that is devised for energy-efficient holograms. Furthermore, for considering various hologram devices (i.e., ultrasound transducers), we propose a physical constraint (PC) layer. Simulation and experimental studies were carried out for two different hologram devices, such as a 3-D printed lens, attached to a single element transducer, and a 2-D ultrasound array. The proposed framework was compared with the iterative angular spectrum approach (IASA) and the state-of-the-art (SOTA) iterative optimization method, Diff-PAT. In the simulation study, our framework showed a few hundred times faster generation speed, along with comparable or even better reconstruction quality, than those of IASA and Diff-PAT. In the experimental study, the framework was validated with 3-D printed lenses fabricated based on different methods, and the physical effect of the lenses on the reconstruction quality was discussed. The outcomes of the proposed framework in various cases (i.e., hologram generator networks, loss functions, and hologram devices) suggest that our framework may become a very useful alternative tool for other existing acoustic hologram applications, and it can expand novel medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏捷的猪猪侠完成签到,获得积分10
刚刚
刚刚
刚刚
咕噜仔发布了新的文献求助50
刚刚
诚c发布了新的文献求助10
1秒前
1秒前
饭宝发布了新的文献求助10
2秒前
SciGPT应助大胆的期待采纳,获得10
2秒前
奋斗夏烟完成签到,获得积分20
2秒前
气泡水完成签到 ,获得积分10
2秒前
rosy完成签到,获得积分10
3秒前
rjy完成签到 ,获得积分10
3秒前
4秒前
沙111发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
5秒前
zhoull完成签到 ,获得积分10
5秒前
5秒前
5秒前
学术蝗虫发布了新的文献求助10
5秒前
aurora完成签到,获得积分10
6秒前
bopbopbaby发布了新的文献求助200
6秒前
sll完成签到,获得积分10
6秒前
犹豫的一斩应助迅速冰岚采纳,获得10
6秒前
聂裕铭完成签到 ,获得积分10
6秒前
谦让成协完成签到,获得积分10
7秒前
7秒前
大个应助侦察兵采纳,获得10
7秒前
科研通AI5应助猪猪hero采纳,获得10
7秒前
7秒前
7秒前
WilsonT完成签到,获得积分10
7秒前
SDS发布了新的文献求助10
8秒前
LLL发布了新的文献求助10
8秒前
爆米花应助娜行采纳,获得10
9秒前
9秒前
虫二队长完成签到,获得积分10
9秒前
9秒前
manan发布了新的文献求助10
9秒前
铸一字错完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678