Dual Instance-Consistent Network for Cross-Domain Object Detection

计算机科学 人工智能 目标检测 领域(数学分析) 对偶(语法数字) 对象(语法) 计算机视觉 模式识别(心理学) 数学 文学类 数学分析 艺术
作者
Yifan Jiao,Hantao Yao,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7338-7352 被引量:4
标识
DOI:10.1109/tpami.2022.3218569
摘要

Cross-domain object detection aims to transfer knowledge from a labeled dataset to an unlabeled dataset. Most existing methods apply a unified embedding model to generate the tightly coupled source and target descriptions for domain alignment, leading to the destroyed feature distribution of the target domain because the embedding model is mainly controlled by the source domain. To reduce the representation bias of the target domain, we apply two independent networks to extract two types of discriminative descriptions with mutual consistency, i.e., a novel Dual Instance-Consistent Network (DICN) is proposed for cross-domain object detection. Especially, Dual Instance-Consistent Module containing the instance mutual consistency between Primary Network and Auxiliary Network is applied to align two domains, where Primary and Auxiliary Networks are used to obtain the source-specific and target-specific information, respectively. The instance mutual consistency consists of two terms: feature consistency and detection consistency, which is applied to align the instance feature and the output of detection head, respectively. With the instance mutual consistency, optimizing the Primary (Auxiliary) Network only with source (target) images by fixing the Auxiliary (Primary) Network can generate the source(target)-specific description. Extensive experiments on several benchmarks demonstrate the effectiveness of the proposed DICN, e.g., obtaining mAP of 44.10% for Cityscapes → Foggy Cityscapes, AP on car of 76.50% for Cityscapes → KITTI, MR -2 of 8.87%, 12.66%, 22.27%, and 42.06% for COCOPersons → Caltech, CityPersons → Caltech, COCOPersons → CityPersons, and Caltech → CityPersons, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的俊驰应助瑶林采纳,获得30
1秒前
1秒前
qy发布了新的文献求助10
2秒前
月亮完成签到,获得积分10
2秒前
4秒前
酷波er应助干冷安采纳,获得10
5秒前
搜集达人应助又名采纳,获得10
6秒前
冷静惜灵发布了新的文献求助10
6秒前
zanilia发布了新的文献求助10
7秒前
思源应助刘晓倩采纳,获得10
7秒前
8秒前
坚定老九发布了新的文献求助10
8秒前
8秒前
冯月应助老迟到的冬瓜采纳,获得10
9秒前
小马甲应助nusiew采纳,获得10
9秒前
科研狗完成签到 ,获得积分10
9秒前
crazy发布了新的文献求助10
10秒前
李爱国应助你是我的唯一采纳,获得10
11秒前
蘑菇发布了新的文献求助10
12秒前
12秒前
12秒前
今后应助轻松寒安采纳,获得10
13秒前
14秒前
15秒前
mhl11应助Alena采纳,获得10
15秒前
16秒前
又名完成签到,获得积分10
18秒前
18秒前
19秒前
大模型应助宋枝野采纳,获得10
20秒前
又名发布了新的文献求助10
21秒前
刘晓倩发布了新的文献求助10
21秒前
22秒前
酷波er应助NIHAO采纳,获得10
22秒前
22秒前
体贴的荣轩完成签到,获得积分10
22秒前
yuying完成签到 ,获得积分10
24秒前
24秒前
z3Q应助科研通管家采纳,获得10
26秒前
mhl11应助痴情的萃采纳,获得10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313509
求助须知:如何正确求助?哪些是违规求助? 2945856
关于积分的说明 8527337
捐赠科研通 2621533
什么是DOI,文献DOI怎么找? 1433736
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650613