Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation

异常检测 异常(物理) 计算机科学 训练集 集合(抽象数据类型) 培训(气象学) 人工智能 蒸馏 机器学习 数据集 数据挖掘 模式识别(心理学) 物理 气象学 有机化学 化学 程序设计语言 凝聚态物理
作者
Hongbo Liu,Kai Li,Xiu Li,Yulun Zhang
标识
DOI:10.1109/icip46576.2022.9897777
摘要

Anomaly Detection (AD) aims to find defective patterns or abnormal samples among data, and has been a hot research topic due to various real-world applications. While various AD methods have been proposed, most of them assume the availability of a clean (anomaly-free) training set, which however may be hard to guarantee in many real-world industry applications. This motivates us to investigate Unsupervised Anomaly Detection (UAD) in which the training set includes both normal and abnormal samples. In this paper, we address the UAD problem by proposing a Self-Training and Knowledge Distillation (STKD) model. STKD combats anomalies in the training set by iteratively alternating between excluding samples of high anomaly probabilities and training the model with the purified training set. Despite that the model is trained with a cleaner training set, the inevitably existing anomalies may still cause negative impact. STKD alleviates this by regularizing the model to respond similarly to a teacher model which has not been trained with noisy data. Experiments show that STKD consistently produces more robust performance with different levels of anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后千雁完成签到,获得积分10
刚刚
grs发布了新的文献求助10
刚刚
刚刚
1秒前
开心potato完成签到,获得积分10
1秒前
浮游应助dangniuma采纳,获得10
1秒前
今后应助lyx采纳,获得10
2秒前
当当完成签到 ,获得积分10
3秒前
科研通AI5应助之一采纳,获得10
3秒前
Thexun完成签到,获得积分10
3秒前
美少女壮士完成签到,获得积分10
3秒前
4秒前
Lanala33发布了新的文献求助30
4秒前
4秒前
may发布了新的文献求助10
4秒前
搞怪煎蛋完成签到 ,获得积分10
5秒前
5秒前
英俊的铭应助拾一采纳,获得10
6秒前
爆米花应助李耐寒采纳,获得10
7秒前
7秒前
9秒前
俞点发布了新的文献求助30
9秒前
hetao286发布了新的文献求助10
10秒前
香蕉觅云应助nick采纳,获得10
11秒前
深情安青应助执着烧鹅采纳,获得30
11秒前
xz发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
Jasper应助may采纳,获得10
15秒前
科研通AI5应助潘朒朒采纳,获得10
16秒前
Lanala33完成签到 ,获得积分10
16秒前
17秒前
17秒前
周娅敏发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
GGbond发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073632
求助须知:如何正确求助?哪些是违规求助? 4293744
关于积分的说明 13379375
捐赠科研通 4115142
什么是DOI,文献DOI怎么找? 2253454
邀请新用户注册赠送积分活动 1258217
关于科研通互助平台的介绍 1191108