Unsupervised Anomaly Detection with Self-Training and Knowledge Distillation

异常检测 异常(物理) 计算机科学 训练集 集合(抽象数据类型) 培训(气象学) 人工智能 蒸馏 机器学习 数据集 数据挖掘 模式识别(心理学) 化学 物理 有机化学 气象学 程序设计语言 凝聚态物理
作者
Hongbo Liu,Kai Li,Xiu Li,Yulun Zhang
标识
DOI:10.1109/icip46576.2022.9897777
摘要

Anomaly Detection (AD) aims to find defective patterns or abnormal samples among data, and has been a hot research topic due to various real-world applications. While various AD methods have been proposed, most of them assume the availability of a clean (anomaly-free) training set, which however may be hard to guarantee in many real-world industry applications. This motivates us to investigate Unsupervised Anomaly Detection (UAD) in which the training set includes both normal and abnormal samples. In this paper, we address the UAD problem by proposing a Self-Training and Knowledge Distillation (STKD) model. STKD combats anomalies in the training set by iteratively alternating between excluding samples of high anomaly probabilities and training the model with the purified training set. Despite that the model is trained with a cleaner training set, the inevitably existing anomalies may still cause negative impact. STKD alleviates this by regularizing the model to respond similarly to a teacher model which has not been trained with noisy data. Experiments show that STKD consistently produces more robust performance with different levels of anomalies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kinizu完成签到,获得积分10
刚刚
oneonlycrown完成签到,获得积分10
刚刚
自信的碧发布了新的文献求助20
3秒前
xiaoshuwang完成签到,获得积分10
3秒前
5秒前
13击完成签到,获得积分10
5秒前
6秒前
sangxuet完成签到,获得积分10
6秒前
wangbq完成签到 ,获得积分10
7秒前
晓薇完成签到,获得积分10
7秒前
8秒前
8秒前
吕韦霖发布了新的文献求助10
8秒前
9秒前
和谐依珊发布了新的文献求助10
10秒前
jagger发布了新的文献求助10
10秒前
青柠完成签到,获得积分10
10秒前
fan完成签到,获得积分10
10秒前
何pengda完成签到,获得积分10
10秒前
绿麦盲区完成签到,获得积分10
11秒前
YSY发布了新的文献求助10
13秒前
13秒前
homelight666发布了新的文献求助10
13秒前
kitsuki完成签到,获得积分10
13秒前
瑁柏发布了新的文献求助10
14秒前
热心市民小红花应助热木采纳,获得10
15秒前
16秒前
斯文败类应助hjl90527采纳,获得10
16秒前
欣欣欣关注了科研通微信公众号
16秒前
小鞠佩奇完成签到,获得积分10
16秒前
pluto应助雪白小蜜蜂采纳,获得10
16秒前
天天快乐应助猪肉水饺采纳,获得10
18秒前
马上毕业发布了新的文献求助10
19秒前
李爱国应助歌尔德蒙采纳,获得10
19秒前
博修发布了新的文献求助10
19秒前
21秒前
Icey完成签到 ,获得积分10
22秒前
YY完成签到 ,获得积分10
24秒前
华仔应助默默安双采纳,获得10
26秒前
Hayat应助科研通管家采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150