Automated method for routine microplastic detection and quantification

微塑料 Python(编程语言) 图像处理 计算机科学 滤波器(信号处理) 图像分析 人工智能 鉴定(生物学) 软件 尼罗河红 计算机视觉 模式识别(心理学) 数字图像处理 图像(数学) 地质学 光学 物理 操作系统 程序设计语言 植物 海洋学 生物 荧光
作者
Matteo Giardino,Valentina Balestra,Davide Janner,Rossana Bellopede
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:859: 160036-160036 被引量:39
标识
DOI:10.1016/j.scitotenv.2022.160036
摘要

Microplastics (MPs) are a heterogeneous group of solid polymers with dimensions <5 mm, which are a widespread contaminant of the environment. Their ubiquitous presence grabbed researchers' attention in the last decade, and the problem of MPs detection and quantification is currently a topic of utmost importance. Most identification and quantification protocols are still based on the visual count, which is an extremely time-consuming and error-prone task due to operator subjectivity. To address such an issue, different software analysis procedures are available, but they mainly rely either on the use of optical microscopy, covering a minimal area for each sample (mm2 size), or they allow only the identification of the largest particles (>1 mm). Here, a semi-automatic innovative image processing method for quantifying and measuring microplastics on filter membrane substrates is presented and validated, comparing results with data obtained using visual counting performed by an experienced operator. The algorithm was tested with artificially generated microplastic images and samples taken from natural environments. Samples of Borgio Verezzi show cave sediment and Po River water were filtered on a glass filter membrane, and photographs were taken under 365 nm illumination, both without and with Nile Red staining. The proposed image analysis method, implemented in an easy-to-use Python script, was quite accurate and fast (about 10 s/image average processing time), showing an average deviation below 10 %, which is further reduced to about 8 % if the samples are stained with Nile Red.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助sameen采纳,获得10
1秒前
666星爷完成签到,获得积分10
1秒前
2秒前
3秒前
易达发布了新的文献求助10
3秒前
乐乐应助美味的薯片采纳,获得10
5秒前
zz发布了新的文献求助10
5秒前
落后寒凡完成签到,获得积分10
7秒前
阔达的访风完成签到 ,获得积分10
7秒前
8秒前
xxxx发布了新的文献求助10
9秒前
大模型应助XL神放采纳,获得30
9秒前
QLZ发布了新的文献求助20
10秒前
一新完成签到,获得积分10
10秒前
正直的博完成签到,获得积分10
11秒前
仙棠完成签到,获得积分10
11秒前
12秒前
赘婿应助小巧含之采纳,获得10
13秒前
13秒前
海的呼唤发布了新的文献求助10
13秒前
跳跃的洪纲完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
7777完成签到,获得积分20
14秒前
zhangyu应助易达采纳,获得10
14秒前
正直的博发布了新的文献求助20
14秒前
14秒前
人谷完成签到 ,获得积分10
15秒前
16秒前
吃你家大米啦完成签到,获得积分10
16秒前
16秒前
shawn完成签到 ,获得积分10
17秒前
方听莲完成签到 ,获得积分10
17秒前
Tan发布了新的文献求助30
18秒前
xxxx完成签到,获得积分10
19秒前
爆米花应助樱桃小王子采纳,获得10
19秒前
21秒前
rookiefcb发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014