Automated method for routine microplastic detection and quantification

微塑料 Python(编程语言) 图像处理 计算机科学 滤波器(信号处理) 图像分析 人工智能 鉴定(生物学) 软件 尼罗河红 计算机视觉 模式识别(心理学) 数字图像处理 图像(数学) 地质学 光学 物理 操作系统 程序设计语言 植物 海洋学 生物 荧光
作者
Matteo Giardino,Valentina Balestra,Davide Janner,Rossana Bellopede
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:859: 160036-160036 被引量:39
标识
DOI:10.1016/j.scitotenv.2022.160036
摘要

Microplastics (MPs) are a heterogeneous group of solid polymers with dimensions <5 mm, which are a widespread contaminant of the environment. Their ubiquitous presence grabbed researchers' attention in the last decade, and the problem of MPs detection and quantification is currently a topic of utmost importance. Most identification and quantification protocols are still based on the visual count, which is an extremely time-consuming and error-prone task due to operator subjectivity. To address such an issue, different software analysis procedures are available, but they mainly rely either on the use of optical microscopy, covering a minimal area for each sample (mm2 size), or they allow only the identification of the largest particles (>1 mm). Here, a semi-automatic innovative image processing method for quantifying and measuring microplastics on filter membrane substrates is presented and validated, comparing results with data obtained using visual counting performed by an experienced operator. The algorithm was tested with artificially generated microplastic images and samples taken from natural environments. Samples of Borgio Verezzi show cave sediment and Po River water were filtered on a glass filter membrane, and photographs were taken under 365 nm illumination, both without and with Nile Red staining. The proposed image analysis method, implemented in an easy-to-use Python script, was quite accurate and fast (about 10 s/image average processing time), showing an average deviation below 10 %, which is further reduced to about 8 % if the samples are stained with Nile Red.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yong发布了新的文献求助10
1秒前
wsff发布了新的文献求助10
2秒前
drs完成签到,获得积分10
2秒前
岁晚完成签到 ,获得积分10
2秒前
拂晓完成签到,获得积分10
4秒前
罗美女应助111采纳,获得10
4秒前
传奇3应助QYPANG采纳,获得10
4秒前
猫猫完成签到,获得积分10
5秒前
洛神发布了新的文献求助10
5秒前
神明发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
所所应助KYT采纳,获得10
6秒前
permanent完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
乔达摩悉达多完成签到 ,获得积分10
9秒前
10秒前
大模型应助酷炫翠柏采纳,获得30
10秒前
共享精神应助耍酷的伟祺采纳,获得10
11秒前
bu拿下PHD绝不回头完成签到,获得积分10
11秒前
bkagyin应助皇帝的床帘采纳,获得40
11秒前
扶瑶可接发布了新的文献求助10
11秒前
qq大魔王完成签到,获得积分10
12秒前
yuanqing发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
沙琪玛完成签到,获得积分20
13秒前
13秒前
Lucas应助拂晓采纳,获得10
13秒前
斯文败类应助QYPANG采纳,获得10
14秒前
liekkas发布了新的文献求助10
14秒前
15秒前
15秒前
zz桓桓完成签到,获得积分20
15秒前
edjtzlz关注了科研通微信公众号
16秒前
嘟嘟卡皮巴拉完成签到 ,获得积分10
16秒前
17秒前
lyy关注了科研通微信公众号
17秒前
田柾国发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213