Automated method for routine microplastic detection and quantification

微塑料 Python(编程语言) 图像处理 计算机科学 滤波器(信号处理) 图像分析 人工智能 鉴定(生物学) 软件 尼罗河红 计算机视觉 环境科学 模式识别(心理学) 数字图像处理 图像(数学) 化学 光学 环境化学 物理 生态学 操作系统 程序设计语言 荧光 生物
作者
Matteo Giardino,Valentina Balestra,Davide Janner,Rossana Bellopede
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:859: 160036-160036 被引量:29
标识
DOI:10.1016/j.scitotenv.2022.160036
摘要

Microplastics (MPs) are a heterogeneous group of solid polymers with dimensions <5 mm, which are a widespread contaminant of the environment. Their ubiquitous presence grabbed researchers' attention in the last decade, and the problem of MPs detection and quantification is currently a topic of utmost importance. Most identification and quantification protocols are still based on the visual count, which is an extremely time-consuming and error-prone task due to operator subjectivity. To address such an issue, different software analysis procedures are available, but they mainly rely either on the use of optical microscopy, covering a minimal area for each sample (mm2 size), or they allow only the identification of the largest particles (>1 mm). Here, a semi-automatic innovative image processing method for quantifying and measuring microplastics on filter membrane substrates is presented and validated, comparing results with data obtained using visual counting performed by an experienced operator. The algorithm was tested with artificially generated microplastic images and samples taken from natural environments. Samples of Borgio Verezzi show cave sediment and Po River water were filtered on a glass filter membrane, and photographs were taken under 365 nm illumination, both without and with Nile Red staining. The proposed image analysis method, implemented in an easy-to-use Python script, was quite accurate and fast (about 10 s/image average processing time), showing an average deviation below 10 %, which is further reduced to about 8 % if the samples are stained with Nile Red.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh完成签到 ,获得积分10
刚刚
颠颠的哦发布了新的文献求助10
刚刚
2秒前
风起完成签到 ,获得积分10
3秒前
小元发布了新的文献求助10
4秒前
5秒前
CipherSage应助毅诚菌采纳,获得10
5秒前
7秒前
7秒前
8秒前
9秒前
ceeray23应助AWcong采纳,获得10
9秒前
9秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Noel应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
南风应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得20
12秒前
Hello应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
梦幻发布了新的文献求助10
13秒前
Owen应助氨氯地平采纳,获得10
13秒前
Orange应助22采纳,获得10
15秒前
MOF发布了新的文献求助10
16秒前
CodeCraft应助thw采纳,获得10
17秒前
北风歌应助WangRuize采纳,获得10
17秒前
123发布了新的文献求助10
18秒前
合适的梦菡完成签到,获得积分10
19秒前
21秒前
22秒前
無屿啊-完成签到,获得积分10
22秒前
静谧180发布了新的文献求助10
22秒前
gaogao完成签到,获得积分10
24秒前
提米橘发布了新的文献求助50
24秒前
毛豆应助asd采纳,获得30
24秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434032
求助须知:如何正确求助?哪些是违规求助? 3031223
关于积分的说明 8941345
捐赠科研通 2719217
什么是DOI,文献DOI怎么找? 1491694
科研通“疑难数据库(出版商)”最低求助积分说明 689392
邀请新用户注册赠送积分活动 685523