亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models

比例危险模型 随机森林 回归 人工智能 机器学习 Lasso(编程语言) 统计 回归分析 支持向量机 计算机科学 梯度升压 数学 万维网
作者
Meng Wang,Matthew Greenberg,Nils D. Forkert,Thierry Chekouo,Gabriel Afriyie,Zahinoor Ismail,Eric E. Smith,Tolulope T. Sajobi
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12874-022-01754-y
摘要

Cox proportional hazards regression models and machine learning models are widely used for predicting the risk of dementia. Existing comparisons of these models have mostly been based on empirical datasets and have yielded mixed results. This study examines the accuracy of various machine learning and of the Cox regression models for predicting time-to-event outcomes using Monte Carlo simulation in people with mild cognitive impairment (MCI).The predictive accuracy of nine time-to-event regression and machine learning models were investigated. These models include Cox regression, penalized Cox regression (with Ridge, LASSO, and elastic net penalties), survival trees, random survival forests, survival support vector machines, artificial neural networks, and extreme gradient boosting. Simulation data were generated using study design and data characteristics of a clinical registry and a large community-based registry of patients with MCI. The predictive performance of these models was evaluated based on three-fold cross-validation via Harrell's concordance index (c-index), integrated calibration index (ICI), and integrated brier score (IBS).Cox regression and machine learning model had comparable predictive accuracy across three different performance metrics and data-analytic conditions. The estimated c-index values for Cox regression, random survival forests, and extreme gradient boosting were 0.70, 0.69 and 0.70, respectively, when the data were generated from a Cox regression model in a large sample-size conditions. In contrast, the estimated c-index values for these models were 0.64, 0.64, and 0.65 when the data were generated from a random survival forest in a large sample size conditions. Both Cox regression and random survival forest had the lowest ICI values (0.12 for a large sample size and 0.18 for a small sample size) among all the investigated models regardless of sample size and data generating model.Cox regression models have comparable, and sometimes better predictive performance, than more complex machine learning models. We recommend that the choice among these models should be guided by important considerations for research hypotheses, model interpretability, and type of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助郭志康采纳,获得10
10秒前
17秒前
郭志康完成签到,获得积分10
19秒前
21秒前
郭志康发布了新的文献求助10
22秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
大大王完成签到,获得积分20
39秒前
44秒前
1分钟前
曙光完成签到,获得积分10
1分钟前
1分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
善学以致用应助紫津采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
紫津发布了新的文献求助10
4分钟前
谢玉婷发布了新的文献求助10
4分钟前
5分钟前
5分钟前
5分钟前
oleskarabach发布了新的文献求助10
6分钟前
6分钟前
852应助科研通管家采纳,获得30
6分钟前
6分钟前
任性蘑菇完成签到 ,获得积分10
6分钟前
7分钟前
zhanggq123发布了新的文献求助10
7分钟前
藤椒辣鱼应助zhanggq123采纳,获得10
7分钟前
小蘑菇应助zhanggq123采纳,获得10
7分钟前
7分钟前
oleskarabach发布了新的文献求助10
7分钟前
7分钟前
8分钟前
8分钟前
Jasper应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434804
求助须知:如何正确求助?哪些是违规求助? 3032092
关于积分的说明 8944274
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492128
科研通“疑难数据库(出版商)”最低求助积分说明 689716
邀请新用户注册赠送积分活动 685847