亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models

比例危险模型 随机森林 回归 人工智能 机器学习 Lasso(编程语言) 统计 回归分析 支持向量机 计算机科学 梯度升压 数学 万维网
作者
Meng Wang,Matthew Greenberg,Nils D. Forkert,Thierry Chekouo,Gabriel Afriyie,Zahinoor Ismail,Eric E. Smith,Tolulope T. Sajobi
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12874-022-01754-y
摘要

Cox proportional hazards regression models and machine learning models are widely used for predicting the risk of dementia. Existing comparisons of these models have mostly been based on empirical datasets and have yielded mixed results. This study examines the accuracy of various machine learning and of the Cox regression models for predicting time-to-event outcomes using Monte Carlo simulation in people with mild cognitive impairment (MCI).The predictive accuracy of nine time-to-event regression and machine learning models were investigated. These models include Cox regression, penalized Cox regression (with Ridge, LASSO, and elastic net penalties), survival trees, random survival forests, survival support vector machines, artificial neural networks, and extreme gradient boosting. Simulation data were generated using study design and data characteristics of a clinical registry and a large community-based registry of patients with MCI. The predictive performance of these models was evaluated based on three-fold cross-validation via Harrell's concordance index (c-index), integrated calibration index (ICI), and integrated brier score (IBS).Cox regression and machine learning model had comparable predictive accuracy across three different performance metrics and data-analytic conditions. The estimated c-index values for Cox regression, random survival forests, and extreme gradient boosting were 0.70, 0.69 and 0.70, respectively, when the data were generated from a Cox regression model in a large sample-size conditions. In contrast, the estimated c-index values for these models were 0.64, 0.64, and 0.65 when the data were generated from a random survival forest in a large sample size conditions. Both Cox regression and random survival forest had the lowest ICI values (0.12 for a large sample size and 0.18 for a small sample size) among all the investigated models regardless of sample size and data generating model.Cox regression models have comparable, and sometimes better predictive performance, than more complex machine learning models. We recommend that the choice among these models should be guided by important considerations for research hypotheses, model interpretability, and type of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助haokeyan采纳,获得10
13秒前
Hart完成签到 ,获得积分10
20秒前
善学以致用应助风止采纳,获得10
27秒前
酷波er应助yupeijin采纳,获得10
31秒前
35秒前
39秒前
风止发布了新的文献求助10
41秒前
43秒前
没有昵称发布了新的文献求助10
46秒前
赘婿应助风止采纳,获得10
52秒前
科研通AI5应助没有昵称采纳,获得10
53秒前
54秒前
852应助顺心的星月采纳,获得10
55秒前
小pppp发布了新的文献求助10
59秒前
刘大喜发布了新的文献求助10
1分钟前
小pppp完成签到,获得积分10
1分钟前
喵喵发布了新的文献求助230
1分钟前
1分钟前
1分钟前
86400完成签到,获得积分10
1分钟前
1分钟前
香蕉觅云应助zhangyimg采纳,获得10
1分钟前
天天快乐应助Sahar采纳,获得10
1分钟前
1分钟前
1分钟前
uu发布了新的文献求助10
1分钟前
haokeyan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
haokeyan完成签到,获得积分10
1分钟前
Sahar发布了新的文献求助10
1分钟前
竹子完成签到,获得积分10
1分钟前
无花果应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
m(_._)m完成签到 ,获得积分0
2分钟前
内向耷完成签到 ,获得积分20
2分钟前
Sahar完成签到,获得积分10
2分钟前
2分钟前
2分钟前
sukii发布了新的文献求助30
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832