Key factors of the self-consolidation mechanism for sintering Li7La3Zr2O12 solid electrolytes

烧结 晶粒生长 合并(业务) 离子电导率 微观结构 快离子导体 坩埚(大地测量学) 电解质 电导率 晶界 化学工程 冶金 材料科学 化学 业务 电极 工程类 会计 计算化学 物理化学
作者
Meng Liu,Haiyang Chen,Songtong Zhang,Guangqi Li,Bin Li,Yuehua Wen,Jingyi Qiu,Junhong Chen,Pengcheng Zhao
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:556: 232447-232447 被引量:6
标识
DOI:10.1016/j.jpowsour.2022.232447
摘要

Li7La3Zr2O12 (LLZO) is a potential solid electrolyte for all-solid-state batteries owing to its high ionic conductivity and excellent stability. The self-consolidation strategy is an extremely simplified method for LLZO preparation compared to the conventional preparation methods using hot- or cold-pressing operations. Despite the absence of high-pressure assistance, the self-consolidated LLZO exhibits high density and enhanced microstructure. The self-densification mechanism of LLZO solid electrolytes is interesting and deserves further investigation. Herein, the effects of the sintering time and the inadvertently introduced Al on the self-consolidation process are systematically studied. Extending sintering time expels the sintering voids at the grain boundaries, thereby promoting grain growth. The Li atoms in the LLZO crystal structure are rearranged and adjusted to reach an optimal state. The LLZO achieves a highly dense morphology with a Li+ ion conductivity of 3.87 × 10−4 S cm−1 when the sintering time is 20 h. Notably, an Al2O3 crucible, instead of a MgO crucible, under the same sintering conditions, contributes to the LLZO self-consolidation by generating an Al-containing solid solution. This work sheds light on the key role of the solid solutions in LLZO self-consolidation, thereby inspiring an alternative optimization method for the preparation of solid electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天发布了新的文献求助10
刚刚
清心完成签到,获得积分20
刚刚
dsfsd发布了新的文献求助10
刚刚
NexusExplorer应助黄伟凯采纳,获得10
1秒前
1秒前
李健应助ayayaya采纳,获得10
1秒前
1秒前
1秒前
纯真晓灵发布了新的文献求助10
1秒前
科研通AI6应助1397采纳,获得10
1秒前
2秒前
祁无敌完成签到,获得积分0
2秒前
2秒前
hyacinth11111完成签到,获得积分10
2秒前
小豆发布了新的文献求助10
2秒前
3秒前
3秒前
葵屿发布了新的文献求助10
3秒前
lingmuhuahua发布了新的文献求助10
3秒前
田様应助顺利毕业采纳,获得10
3秒前
3秒前
3秒前
崔彤完成签到,获得积分10
4秒前
SciGPT应助无名采纳,获得10
4秒前
4秒前
4秒前
cy123发布了新的文献求助10
5秒前
雍以菱应助张开心采纳,获得20
5秒前
无花果应助jingle采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
orixero应助iii采纳,获得10
7秒前
YU完成签到,获得积分10
7秒前
7秒前
直率的忆南完成签到,获得积分10
7秒前
wanci应助宋宋采纳,获得10
8秒前
谨慎凡柔发布了新的文献求助10
8秒前
8秒前
充电宝应助09chenyun采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616