Key factors of the self-consolidation mechanism for sintering Li7La3Zr2O12 solid electrolytes

烧结 晶粒生长 合并(业务) 离子电导率 微观结构 快离子导体 坩埚(大地测量学) 电解质 电导率 晶界 化学工程 冶金 材料科学 化学 业务 电极 工程类 会计 计算化学 物理化学
作者
Meng Liu,Haiyang Chen,Songtong Zhang,Guangqi Li,Bin Li,Yuehua Wen,Jingyi Qiu,Junhong Chen,Pengcheng Zhao
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:556: 232447-232447 被引量:6
标识
DOI:10.1016/j.jpowsour.2022.232447
摘要

Li7La3Zr2O12 (LLZO) is a potential solid electrolyte for all-solid-state batteries owing to its high ionic conductivity and excellent stability. The self-consolidation strategy is an extremely simplified method for LLZO preparation compared to the conventional preparation methods using hot- or cold-pressing operations. Despite the absence of high-pressure assistance, the self-consolidated LLZO exhibits high density and enhanced microstructure. The self-densification mechanism of LLZO solid electrolytes is interesting and deserves further investigation. Herein, the effects of the sintering time and the inadvertently introduced Al on the self-consolidation process are systematically studied. Extending sintering time expels the sintering voids at the grain boundaries, thereby promoting grain growth. The Li atoms in the LLZO crystal structure are rearranged and adjusted to reach an optimal state. The LLZO achieves a highly dense morphology with a Li+ ion conductivity of 3.87 × 10−4 S cm−1 when the sintering time is 20 h. Notably, an Al2O3 crucible, instead of a MgO crucible, under the same sintering conditions, contributes to the LLZO self-consolidation by generating an Al-containing solid solution. This work sheds light on the key role of the solid solutions in LLZO self-consolidation, thereby inspiring an alternative optimization method for the preparation of solid electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
Zkz完成签到,获得积分10
刚刚
刚刚
ww发布了新的文献求助10
刚刚
1秒前
1秒前
大个应助略略略采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
Anesthesialy发布了新的文献求助10
3秒前
princekin完成签到,获得积分10
4秒前
4秒前
sjq完成签到,获得积分20
4秒前
Jbiolover应助笑点低忆南采纳,获得10
4秒前
Rampant完成签到,获得积分10
4秒前
曾峥发布了新的文献求助10
5秒前
5秒前
CodeCraft应助欻欻欻采纳,获得10
5秒前
6秒前
龚幻梦发布了新的文献求助10
7秒前
sujinyu发布了新的文献求助10
7秒前
行者完成签到,获得积分10
7秒前
keke完成签到,获得积分10
8秒前
8秒前
8秒前
冬瑶完成签到,获得积分10
9秒前
9秒前
10秒前
guangweiyan完成签到 ,获得积分10
11秒前
chenwang发布了新的文献求助10
11秒前
12秒前
曾峥完成签到,获得积分10
12秒前
斯文败类应助洁净的士晋采纳,获得10
12秒前
Stargazings发布了新的文献求助10
12秒前
nianlu完成签到,获得积分10
13秒前
略略略发布了新的文献求助10
13秒前
今后应助科研狗采纳,获得10
14秒前
轩辕山槐完成签到,获得积分10
14秒前
CodeCraft应助冬瑶采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348