Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
dongqing12311完成签到,获得积分10
1秒前
FashionBoy应助哭泣的鞋子采纳,获得10
2秒前
4秒前
和谐砖家发布了新的文献求助20
4秒前
4秒前
科目三应助VDC采纳,获得10
4秒前
廿二完成签到 ,获得积分10
6秒前
suee发布了新的文献求助10
6秒前
7秒前
妤懿完成签到 ,获得积分10
7秒前
10秒前
10秒前
588发布了新的文献求助10
10秒前
三杠发布了新的文献求助10
10秒前
11秒前
李小晴天发布了新的文献求助10
13秒前
刘雪磊完成签到,获得积分20
14秒前
14秒前
SciGPT应助nwds采纳,获得10
15秒前
咦yiyi发布了新的文献求助100
17秒前
17秒前
大模型应助坚定灭绝采纳,获得10
18秒前
aaa发布了新的文献求助10
20秒前
自然雁风完成签到,获得积分10
21秒前
我是老大应助百事可乐采纳,获得10
22秒前
健忘捕发布了新的文献求助10
22秒前
Liu_cx完成签到,获得积分10
23秒前
25秒前
26秒前
林新宇完成签到,获得积分10
26秒前
26秒前
OYYO发布了新的文献求助30
26秒前
科研小新发布了新的文献求助10
27秒前
27秒前
28秒前
29秒前
李小颜完成签到,获得积分10
32秒前
李健的小迷弟应助东哥采纳,获得10
32秒前
32秒前
刘雪磊发布了新的文献求助10
32秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502002
求助须知:如何正确求助?哪些是违规求助? 4598010
关于积分的说明 14462250
捐赠科研通 4531639
什么是DOI,文献DOI怎么找? 2483444
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496