Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CipherSage应助外汇交易员采纳,获得10
1秒前
yulian发布了新的文献求助10
1秒前
Supreme发布了新的文献求助10
1秒前
winnie_ymq发布了新的文献求助10
2秒前
5秒前
彭于彦祖应助haha采纳,获得30
5秒前
Wang完成签到,获得积分10
6秒前
科研狗完成签到,获得积分10
6秒前
劈里啪啦发布了新的文献求助10
6秒前
7秒前
挽风发布了新的文献求助10
7秒前
饭神仙鱼完成签到,获得积分10
7秒前
ming应助知性的乐荷采纳,获得10
8秒前
科研通AI2S应助害怕的千琴采纳,获得10
8秒前
萧水白应助iota采纳,获得20
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
jzyy完成签到 ,获得积分10
11秒前
11秒前
平常山河发布了新的文献求助10
11秒前
12完成签到,获得积分10
11秒前
夏尔发布了新的文献求助10
11秒前
领导范儿应助boom采纳,获得10
12秒前
HHHH完成签到,获得积分10
12秒前
12秒前
自然的初南完成签到,获得积分10
13秒前
秋天的向日葵完成签到,获得积分10
13秒前
13秒前
Jasper应助myg8627采纳,获得10
13秒前
斯文败类应助yulian采纳,获得10
14秒前
12发布了新的文献求助10
15秒前
ssdsdsd发布了新的文献求助10
15秒前
小七发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568