Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一发布了新的文献求助10
2秒前
CipherSage应助张利双采纳,获得30
3秒前
roy发布了新的文献求助20
6秒前
7秒前
Lucas应助懒羊羊采纳,获得10
7秒前
7秒前
8秒前
大模型应助天天采纳,获得10
9秒前
ding应助Fortune采纳,获得10
9秒前
叶梦发布了新的文献求助10
10秒前
10秒前
领导范儿应助乔Q采纳,获得10
10秒前
LTY完成签到,获得积分10
11秒前
SL1900发布了新的文献求助100
12秒前
量子星尘发布了新的文献求助10
12秒前
潇潇雨歇发布了新的文献求助10
12秒前
独特的代芙应助张茜采纳,获得10
14秒前
14秒前
zhizhi完成签到 ,获得积分10
14秒前
15秒前
zzz发布了新的文献求助10
15秒前
Foch发布了新的文献求助10
15秒前
潇潇雨歇完成签到,获得积分10
16秒前
17秒前
17秒前
zlll发布了新的文献求助10
18秒前
鲤鱼笑南完成签到,获得积分10
19秒前
20秒前
Ammmo完成签到,获得积分10
22秒前
团子团子猪完成签到,获得积分10
23秒前
nono发布了新的文献求助10
23秒前
Fortune发布了新的文献求助10
23秒前
潇潇雨歇发布了新的文献求助10
24秒前
25秒前
trabbit发布了新的文献求助10
26秒前
王玉颖发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
theodore关注了科研通微信公众号
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406987
求助须知:如何正确求助?哪些是违规求助? 4524670
关于积分的说明 14099651
捐赠科研通 4438500
什么是DOI,文献DOI怎么找? 2436317
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406372