亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助10
6秒前
gxx发布了新的文献求助10
8秒前
惠须一饮三杯杯完成签到,获得积分10
10秒前
冷静的振家完成签到,获得积分10
10秒前
12秒前
13秒前
18秒前
19秒前
wsj发布了新的文献求助10
22秒前
Ava应助骨科小李采纳,获得10
23秒前
24秒前
浪里白条发布了新的文献求助10
25秒前
别看了发布了新的文献求助10
28秒前
斯文败类应助wsj采纳,获得10
30秒前
小蘑菇应助gxx采纳,获得10
36秒前
哲别发布了新的文献求助10
46秒前
Hello应助浪里白条采纳,获得10
50秒前
freshfire完成签到,获得积分20
50秒前
HtheJ完成签到,获得积分10
50秒前
dimples完成签到 ,获得积分10
1分钟前
英俊的铭应助Re采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助小废物采纳,获得20
1分钟前
骨科小李发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
杨江华完成签到,获得积分10
1分钟前
科研大王完成签到,获得积分10
2分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小废物发布了新的文献求助20
2分钟前
nazhang发布了新的文献求助10
2分钟前
浪里白条发布了新的文献求助10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644576
求助须知:如何正确求助?哪些是违规求助? 4764521
关于积分的说明 15025286
捐赠科研通 4802940
什么是DOI,文献DOI怎么找? 2567735
邀请新用户注册赠送积分活动 1525391
关于科研通互助平台的介绍 1484876