Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助scoupsss采纳,获得10
刚刚
shihuishui完成签到,获得积分10
刚刚
脑洞疼应助zz采纳,获得10
刚刚
张子珍完成签到,获得积分10
刚刚
刚刚
许诺完成签到,获得积分10
1秒前
李健的粉丝团团长应助wyf采纳,获得10
1秒前
木子完成签到 ,获得积分10
1秒前
火龙果完成签到,获得积分10
1秒前
爆米花应助艾玛采纳,获得30
1秒前
丘比特应助李皮皮采纳,获得10
1秒前
2秒前
2秒前
chrisliu发布了新的文献求助10
2秒前
2秒前
2秒前
Nil完成签到,获得积分20
3秒前
3秒前
刘晓丹发布了新的文献求助10
4秒前
爱笑可乐完成签到,获得积分10
4秒前
FashionBoy应助甜美的茹嫣采纳,获得10
4秒前
eric完成签到,获得积分10
4秒前
4秒前
仁爱元冬发布了新的文献求助10
5秒前
搜集达人应助YH采纳,获得10
5秒前
asheng完成签到,获得积分10
5秒前
6秒前
6秒前
哈哈呵发布了新的文献求助10
6秒前
田様应助kik采纳,获得10
7秒前
7秒前
zlk发布了新的文献求助10
7秒前
虚心迎曼完成签到,获得积分10
8秒前
张子珍发布了新的文献求助10
8秒前
啦啦啦啦啦完成签到,获得积分10
8秒前
天真鸭子发布了新的文献求助10
8秒前
8秒前
9秒前
BDCGMAN发布了新的文献求助10
9秒前
米兰完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257834
求助须知:如何正确求助?哪些是违规求助? 4419879
关于积分的说明 13758101
捐赠科研通 4293370
什么是DOI,文献DOI怎么找? 2355867
邀请新用户注册赠送积分活动 1352349
关于科研通互助平台的介绍 1313086