亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后访风完成签到 ,获得积分10
29秒前
科研通AI5应助芭乐侠采纳,获得10
43秒前
53秒前
修辛完成签到 ,获得积分10
59秒前
芭乐侠发布了新的文献求助10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
1分钟前
LaVineYoung应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
Sue完成签到 ,获得积分10
1分钟前
滕皓轩完成签到 ,获得积分10
2分钟前
冬去春来完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
TadeoEB发布了新的文献求助10
4分钟前
QQlyy关注了科研通微信公众号
4分钟前
4分钟前
QQlyy发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
Aowu应助草木采纳,获得10
6分钟前
lty发布了新的文献求助10
7分钟前
7分钟前
Yuna96发布了新的文献求助10
7分钟前
爆米花应助满意茹嫣采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
yusuf发布了新的文献求助10
7分钟前
lanxinge完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
高兴的白柏完成签到,获得积分10
9分钟前
yinlao完成签到,获得积分10
9分钟前
充电宝应助科研通管家采纳,获得20
9分钟前
9分钟前
ganzhongxin完成签到,获得积分10
9分钟前
满意茹嫣完成签到,获得积分20
9分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733402
求助须知:如何正确求助?哪些是违规求助? 3277605
关于积分的说明 10003426
捐赠科研通 2993596
什么是DOI,文献DOI怎么找? 1642769
邀请新用户注册赠送积分活动 780623
科研通“疑难数据库(出版商)”最低求助积分说明 748912