亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
Nowind完成签到,获得积分10
19秒前
Nowind发布了新的文献求助30
22秒前
mashibeo应助科研通管家采纳,获得10
49秒前
FashionBoy应助科研通管家采纳,获得10
49秒前
mashibeo应助科研通管家采纳,获得10
49秒前
mashibeo应助科研通管家采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
54秒前
56秒前
婉莹完成签到 ,获得积分0
1分钟前
1分钟前
吃饭香喷喷完成签到 ,获得积分10
1分钟前
否定之否定完成签到,获得积分10
1分钟前
1分钟前
Tumumu完成签到,获得积分10
2分钟前
祁夫人完成签到,获得积分10
2分钟前
文艺沉鱼完成签到 ,获得积分10
2分钟前
baiyeok发布了新的文献求助10
2分钟前
激情的不弱完成签到,获得积分10
2分钟前
baiyeok完成签到,获得积分20
2分钟前
mashibeo应助科研通管家采纳,获得10
2分钟前
mashibeo应助科研通管家采纳,获得10
2分钟前
mashibeo应助科研通管家采纳,获得10
2分钟前
mashibeo应助科研通管家采纳,获得10
2分钟前
科研通AI6应助冬冬林采纳,获得10
2分钟前
端庄的青荷完成签到 ,获得积分10
2分钟前
Omni完成签到,获得积分10
2分钟前
3分钟前
小天发布了新的文献求助30
3分钟前
点点点完成签到 ,获得积分10
3分钟前
自由慕青发布了新的文献求助30
3分钟前
3分钟前
sevry完成签到,获得积分10
3分钟前
3分钟前
酷波er应助Jolly采纳,获得10
3分钟前
可爱的函函应助小天采纳,获得10
3分钟前
3分钟前
大胆菲音完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459061
求助须知:如何正确求助?哪些是违规求助? 4564894
关于积分的说明 14297199
捐赠科研通 4489950
什么是DOI,文献DOI怎么找? 2459436
邀请新用户注册赠送积分活动 1449114
关于科研通互助平台的介绍 1424578