亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alien完成签到,获得积分10
刚刚
10秒前
13秒前
zho发布了新的文献求助10
14秒前
稻草人发布了新的文献求助10
16秒前
科研通AI6应助重要从灵采纳,获得10
19秒前
24秒前
40秒前
44秒前
48秒前
咕咕发布了新的文献求助10
49秒前
蓝莓小蛋糕完成签到 ,获得积分10
53秒前
53秒前
zqq完成签到,获得积分0
54秒前
重要从灵完成签到,获得积分10
1分钟前
Frank完成签到 ,获得积分10
1分钟前
重要从灵发布了新的文献求助10
1分钟前
本本完成签到 ,获得积分10
1分钟前
咕咕完成签到,获得积分10
1分钟前
谨慎秋珊完成签到 ,获得积分10
1分钟前
卿之泽应助Thien采纳,获得30
1分钟前
1分钟前
重庆森林发布了新的文献求助10
2分钟前
小包完成签到,获得积分10
2分钟前
搜集达人应助lourahan采纳,获得50
2分钟前
e麓绝尘完成签到 ,获得积分10
2分钟前
小包发布了新的文献求助10
2分钟前
2分钟前
bookgg完成签到 ,获得积分10
2分钟前
lourahan发布了新的文献求助50
2分钟前
Lucas应助小包采纳,获得10
2分钟前
ying818k完成签到 ,获得积分10
3分钟前
3分钟前
JamesPei应助科研通管家采纳,获得20
3分钟前
背书强完成签到 ,获得积分10
3分钟前
6666发布了新的文献求助10
3分钟前
一墨完成签到,获得积分10
3分钟前
无辜笑容发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626005
求助须知:如何正确求助?哪些是违规求助? 4025048
关于积分的说明 12458300
捐赠科研通 3710193
什么是DOI,文献DOI怎么找? 2046504
邀请新用户注册赠送积分活动 1078457
科研通“疑难数据库(出版商)”最低求助积分说明 960922