亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
占囧发布了新的文献求助10
9秒前
slby完成签到 ,获得积分10
14秒前
科研通AI6.1应助占囧采纳,获得10
19秒前
彧辰完成签到 ,获得积分10
21秒前
大黄蜂完成签到,获得积分10
21秒前
科研通AI2S应助yyy采纳,获得10
26秒前
cy完成签到,获得积分20
28秒前
KYT完成签到 ,获得积分10
28秒前
31秒前
科研通AI6.1应助cy采纳,获得30
32秒前
32秒前
32秒前
67n发布了新的文献求助10
35秒前
小蘑菇应助冷风寒采纳,获得10
35秒前
共享精神应助哈哈采纳,获得10
35秒前
SSY发布了新的文献求助10
36秒前
yyy发布了新的文献求助10
37秒前
38秒前
好人完成签到,获得积分10
39秒前
YJL发布了新的文献求助10
40秒前
41秒前
华仔应助shinn采纳,获得10
44秒前
44秒前
46秒前
46秒前
晴朗发布了新的文献求助10
46秒前
占囧完成签到,获得积分10
47秒前
beifa完成签到,获得积分10
48秒前
所所应助wdw2501采纳,获得10
51秒前
占囧发布了新的文献求助10
51秒前
51秒前
beifa发布了新的文献求助10
51秒前
小年小少发布了新的文献求助10
52秒前
冷风寒发布了新的文献求助10
56秒前
57秒前
我是老大应助小年小少采纳,获得10
57秒前
58秒前
在水一方应助晴朗采纳,获得10
59秒前
科研通AI2S应助andrele采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772365
求助须知:如何正确求助?哪些是违规求助? 5597951
关于积分的说明 15429577
捐赠科研通 4905375
什么是DOI,文献DOI怎么找? 2639348
邀请新用户注册赠送积分活动 1587287
关于科研通互助平台的介绍 1542124