Application of Deep Learning Models to Improve Ulcerative Colitis Endoscopic Disease Activity Scoring Under Multiple Scoring Systems

计算机科学 人工智能 基本事实 卷积神经网络 预处理器 溃疡性结肠炎 深度学习 机器学习 模式识别(心理学) 医学 疾病 内科学
作者
Michael F. Byrne,Remo Panaccione,James E. East,Marietta Iacucci,Nasim Parsa,Rakesh Kalapala,D. Nageshwar Reddy,Hardik Rughwani,Aniruddha Pratap Singh,Sameer K. Berry,R Monsurate,Florian Soudan,Greta Laage,Enrico D Cremonese,L St-Denis,Paul Lemaître,Shima Nikfal,J Asselin,Milagros L Henkel,Simon Travis
出处
期刊:Journal of Crohn's and Colitis [Oxford University Press]
卷期号:17 (4): 463-471 被引量:18
标识
DOI:10.1093/ecco-jcc/jjac152
摘要

Abstract Background and Aims Lack of clinical validation and inter-observer variability are two limitations of endoscopic assessment and scoring of disease severity in patients with ulcerative colitis [UC]. We developed a deep learning [DL] model to improve, accelerate and automate UC detection, and predict the Mayo Endoscopic Subscore [MES] and the Ulcerative Colitis Endoscopic Index of Severity [UCEIS]. Methods A total of 134 prospective videos [1550 030 frames] were collected and those with poor quality were excluded. The frames were labelled by experts based on MES and UCEIS scores. The scored frames were used to create a preprocessing pipeline and train multiple convolutional neural networks [CNNs] with proprietary algorithms in order to filter, detect and assess all frames. These frames served as the input for the DL model, with the output being continuous scores for MES and UCEIS [and its components]. A graphical user interface was developed to support both labelling video sections and displaying the predicted disease severity assessment by the artificial intelligence from endoscopic recordings. Results Mean absolute error [MAE] and mean bias were used to evaluate the distance of the continuous model’s predictions from ground truth, and its possible tendency to over/under-predict were excellent for MES and UCEIS. The quadratic weighted kappa used to compare the inter-rater agreement between experts’ labels and the model’s predictions showed strong agreement [0.87, 0.88 at frame-level, 0.88, 0.90 at section-level and 0.90, 0.78 at video-level, for MES and UCEIS, respectively]. Conclusions We present the first fully automated tool that improves the accuracy of the MES and UCEIS, reduces the time between video collection and review, and improves subsequent quality assurance and scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYG发布了新的文献求助10
1秒前
Mansis发布了新的文献求助10
1秒前
时有落花至完成签到,获得积分10
1秒前
1秒前
1秒前
雾见春完成签到 ,获得积分10
2秒前
22222应助科研通管家采纳,获得30
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
平淡向雁完成签到,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
wanci应助xiaoliang采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
谢大喵应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
魔幻的千山完成签到,获得积分10
3秒前
所所应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
ouLniM完成签到 ,获得积分10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
4秒前
CipherSage应助顺心的夜香采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得200
4秒前
4秒前
4秒前
七七八发布了新的文献求助10
5秒前
范小雨发布了新的文献求助10
5秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340292
求助须知:如何正确求助?哪些是违规求助? 4476835
关于积分的说明 13932933
捐赠科研通 4372659
什么是DOI,文献DOI怎么找? 2402478
邀请新用户注册赠送积分活动 1395350
关于科研通互助平台的介绍 1367444