Multi-label classification of Alzheimer's disease stages from resting-state fMRI-based correlation connectivity data and deep learning

静息状态功能磁共振成像 人工智能 深度学习 神经影像学 计算机科学 认知 自编码 神经科学 阿尔茨海默病 模式识别(心理学) 机器学习 疾病 心理学 医学 病理
作者
Abdulaziz Alorf,Muhammad Usman Ghani Khan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106240-106240 被引量:53
标识
DOI:10.1016/j.compbiomed.2022.106240
摘要

Alzheimer's disease is a neurodegenerative condition that gradually impairs cognitive abilities. Recently, various neuroimaging modalities and machine learning methods have surfaced to diagnose Alzheimer's disease. Resting-state fMRI is a neuroimaging modality that has been widely utilized to study brain activity related to neurodegenerative diseases. In literature, the previous studies are limited to the binary classification of Alzheimer's disease and Mild Cognitive Impairment. The application of computer-aided diagnosis for the numerous advancing phases of Alzheimer's disease, on the other hand, remains understudied. This research analyzes and presents methods for multi-label classification of six Alzheimer's stages using rs-fMRI and deep learning. The proposed model solves the multi-class classification problem by extracting the brain's functional connectivity networks from rs-fMRI data and employing two deep learning approaches, Stacked Sparse Autoencoder and Brain Connectivity Graph Convolutional Network. The suggested models' results were assessed using the k-fold cross-validation approach, and an average accuracy of 77.13% and 84.03% was reached for multi-label classification using Stacked Sparse Autoencoders and Brain Connectivity Based Convolutional Network, respectively. An analysis of brain regions was also performed by using the network's learned weights, leading to the conclusion that the precentral gyrus, frontal gyrus, lingual gyrus, and supplementary motor area are the significant brain regions of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
啦啦咔嘞发布了新的文献求助10
1秒前
蛋挞完成签到,获得积分10
1秒前
星辰大海应助jjj采纳,获得10
2秒前
2秒前
Advance.Cheng完成签到,获得积分10
2秒前
学术垃圾完成签到,获得积分10
3秒前
3秒前
yar应助生动的初柳采纳,获得10
3秒前
源源元发布了新的文献求助10
3秒前
4秒前
黎笙完成签到,获得积分10
4秒前
壮观的擎发布了新的文献求助10
4秒前
5秒前
杨大泡泡完成签到 ,获得积分10
5秒前
drywell发布了新的文献求助10
5秒前
所所应助许十五采纳,获得10
5秒前
MnO2fff完成签到,获得积分10
5秒前
LEMONS应助袁小圆采纳,获得10
6秒前
芋头cc完成签到,获得积分10
6秒前
6秒前
ycx完成签到,获得积分20
6秒前
7秒前
西灵壹发布了新的文献求助10
7秒前
机灵冬灵发布了新的文献求助10
7秒前
勤劳的小牛蛙应助hdbys采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
Annora完成签到,获得积分10
8秒前
老默完成签到,获得积分10
8秒前
9秒前
zero完成签到 ,获得积分10
9秒前
夜雨声烦完成签到,获得积分20
10秒前
可爱的函函应助Chaimengdi采纳,获得10
10秒前
woollen2022发布了新的文献求助10
12秒前
12秒前
卡卡可可完成签到,获得积分10
12秒前
12秒前
暖暖完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785