Multi-label classification of Alzheimer's disease stages from resting-state fMRI-based correlation connectivity data and deep learning

静息状态功能磁共振成像 人工智能 深度学习 神经影像学 计算机科学 认知 自编码 神经科学 阿尔茨海默病 模式识别(心理学) 机器学习 疾病 心理学 医学 病理
作者
Abdulaziz Alorf,Muhammad Usman Ghani Khan
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106240-106240 被引量:53
标识
DOI:10.1016/j.compbiomed.2022.106240
摘要

Alzheimer's disease is a neurodegenerative condition that gradually impairs cognitive abilities. Recently, various neuroimaging modalities and machine learning methods have surfaced to diagnose Alzheimer's disease. Resting-state fMRI is a neuroimaging modality that has been widely utilized to study brain activity related to neurodegenerative diseases. In literature, the previous studies are limited to the binary classification of Alzheimer's disease and Mild Cognitive Impairment. The application of computer-aided diagnosis for the numerous advancing phases of Alzheimer's disease, on the other hand, remains understudied. This research analyzes and presents methods for multi-label classification of six Alzheimer's stages using rs-fMRI and deep learning. The proposed model solves the multi-class classification problem by extracting the brain's functional connectivity networks from rs-fMRI data and employing two deep learning approaches, Stacked Sparse Autoencoder and Brain Connectivity Graph Convolutional Network. The suggested models' results were assessed using the k-fold cross-validation approach, and an average accuracy of 77.13% and 84.03% was reached for multi-label classification using Stacked Sparse Autoencoders and Brain Connectivity Based Convolutional Network, respectively. An analysis of brain regions was also performed by using the network's learned weights, leading to the conclusion that the precentral gyrus, frontal gyrus, lingual gyrus, and supplementary motor area are the significant brain regions of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Ava应助开心凌柏采纳,获得10
刚刚
滨户良完成签到 ,获得积分10
2秒前
happyness完成签到,获得积分10
3秒前
4秒前
4秒前
CodeCraft应助hz采纳,获得10
4秒前
天真豪完成签到 ,获得积分10
4秒前
4秒前
小大巫完成签到,获得积分10
5秒前
5秒前
ding应助春树爱学术采纳,获得10
5秒前
芯止谭轩应助陈瑞采纳,获得10
6秒前
kun完成签到,获得积分10
6秒前
7秒前
8秒前
Jidekxin发布了新的文献求助10
9秒前
cc66应助妮妮采纳,获得10
10秒前
比Zn发布了新的文献求助10
10秒前
11秒前
结实小凡完成签到,获得积分10
12秒前
starwan发布了新的文献求助50
13秒前
16秒前
19秒前
20秒前
joehn完成签到,获得积分10
21秒前
冷静芹菜完成签到 ,获得积分10
23秒前
24秒前
18135175733发布了新的文献求助10
25秒前
比Zn完成签到,获得积分10
26秒前
26秒前
上官若男应助goldNAN采纳,获得10
26秒前
在水一方应助有Data发Paper采纳,获得10
27秒前
27秒前
左肩微笑发布了新的文献求助10
28秒前
28秒前
在水一方应助帕克采纳,获得10
28秒前
29秒前
29秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346309
求助须知:如何正确求助?哪些是违规求助? 2973120
关于积分的说明 8657704
捐赠科研通 2653496
什么是DOI,文献DOI怎么找? 1453163
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662659