过电位
析氧
塔菲尔方程
双金属片
材料科学
金属有机骨架
催化作用
分解水
电化学
氢氧化物
电催化剂
贵金属
无机化学
化学工程
金属
化学
有机化学
电极
物理化学
光催化
吸附
工程类
冶金
作者
Sharath Kandambeth,Vinayak S. Kale,Dong Fan,Jeremy A. Bau,Prashant M. Bhatt,Sheng Zhou,Aleksander Shkurenko,Magnus Rueping,Guillaume Maurin,Osama Shekhah,Mohamed Eddaoudi
标识
DOI:10.1002/aenm.202202964
摘要
Abstract Here, this work reports an innovative strategy for the synthesis of chemically robust metal–organic frameworks (MOFs), and applies them as catalysts for the electrocatalytic oxygen evolution reaction (OER). A bimetallic squarate‐based MOF (Sq‐MOF) with a zbr topology serves as an excellent platform for electrocatalytic OER owing to its open porous structure, high affinity toward water, and presence of catalytically active 1D metal hydroxide strips. By regulating the Ni 2+ content in a bimetallic squarate MOF system, the electrochemical structural stability toward OER can be improved. The screening of various metal ratios demonstrates that Ni 3 Fe 1 and Ni 2 Fe 1 Sq‐ zbr ‐MOFs show the best performance for electrocatalytic OER in terms of catalytic activity and structural stability. Ni 2 Fe 1 Sq‐ zbr ‐MOF shows a low overpotential of 230 mV (at 10 mA cm −2 ) and a small Tafel slope of 37.7 mV dec −1 , with an excellent long‐term electrochemical stability for the OER. Remarkably, these overpotential values of Ni 2 Fe 1 Sq‐ zbr ‐MOF are comparable with those of the best‐performing layered double hydroxide (LDH) systems and outperforms the commercially available noble‐metal‐based RuO 2 catalyst for OER under identical operational conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI